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Bi-partite Entanglement Entropy

Let us consider a spin chain of length N , subdivided into
regions A and Ā of lengths L and N − L

A

s x i+1s xxi−1s x i+L−1s x i+Ls
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then we define

Von Neumann Entanglement Entropy

SA = −TrA(ρA log(ρA)) with ρA = TrĀ(|Ψ〉〈Ψ|)

|Ψ〉 ground state and ρA the reduced density matrix.
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then we define

Von Neumann Entanglement Entropy

SA = −TrA(ρA log(ρA)) with ρA = TrĀ(|Ψ〉〈Ψ|)

|Ψ〉 ground state and ρA the reduced density matrix.
Other entropies may also be defined such as

Other Entropies

SRényi
A =

log(TrA(ρnA))

1− n
, STsallis

A =
1− TrA(ρnA)

n− 1

Olalla A. Castro-Alvaredo, City University London Entanglement Entropy and QFT



Bi-partite Entanglement Entropy

Let us consider a spin chain of length N , subdivided into
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Replica Trick

SA = −TrA(ρA log(ρA)) = − lim
n→1

d

dn
TrA(ρnA)

For general QFTs the “replica trick” naturally leads to the
notion of replica theories on multi-sheeted Riemann
surfaces ⇒ interpretation of TrA(ρnA)
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Motivation

The study of the EE of extended quantum systems is a popular
area of research in various areas:

Quantum Information: The EE quantifies the amount
of “surprise” that a sub-part of a system finds when
discovering it is correlated to the rest of the system.
Therefore, entanglement entropy is a bona fide measure of
the correlations in the system [Latorre & Riera, Review’09]

Quantum Field Theory: The EE can be defined for any
QFT (operator independent). It provides “universal”
information about quantum systems/quantum states.
[Callan & Wilczek ’94; Holzhey, Larsen & Wilczek ’94;
Latorre, Rico & Kitaev’03; Latorre, Rico & Vidal’04;
Calabrese & Cardy ’04; J.L. Cardy, O.C-A & B. Doyon’08]

Holography (AdS/CFT Correspondence): The EE in
the CFT is given by the area of a certain extremal surface
in the bulk (AdS) [Ryu and Takayanagi’06]
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Motivation in QFT

It is a theoretical measure of entanglement. It is a
particular way of extracting information about the state of
a quantum system.

Near critical points (e.g. Conformal Field Theory) it
displays universal behaviour.

In the context of high energy physics much of the
motivation to study the entanglement entropy has come
from its behaviour at quantum critical points [Holzhey,
Larsen & Wilczek ’94; Calabrese & Cardy ’04]:

S(L) ∼ c

3
logL ⇒ information about the CFT

e.g. the EE of a subsystem of length L diverges
logarithmically. The proportionality constant c is called the
central change. It uniquely characterises the CFT.
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Example: the Ising model

H = −J
2

N∑
i=1

(
σxi σ

x
i+1 + hσzi

)

We may carry out
the “scaling limit” of
this theory in two
different ways:

Set h = 1 from the
beginning: then
ξ =∞ and in the
limit N →∞ this is
a critical model.

Take h > 1: ξ ∝ m−1 finite but
large. Taking N →∞ while L/ξ
is finite we obtain Ising field
theory.
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We may carry out
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this theory in two
different ways:

Set h = 1 from the
beginning: then
ξ =∞ and in the
limit N →∞ this is
a critical model.

Take h > 1: ξ ∝ m−1 finite but
large. Taking N →∞ while L/ξ
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Example: the Ising model

H = −J
2

N∑
i=1

(
σxi σ

x
i+1 + hσzi

)

We may carry out
the “scaling limit” of
this theory in two
different ways:

Set h = 1 from the
beginning: then
ξ =∞ and in the
limit N →∞ this is
a critical model.

Take h > 1: ξ ∝ m−1 finite but
large. Taking N →∞ while L/ξ
is finite we obtain Ising field
theory.
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Partition functions on multi-sheeted Riemann surfaces

For integer numbers n of replicas, in the scaling limit, this
is a partition function on a Riemann surface [Callan &
Wilczek ’94; Holzhey, Larsen & Wilczek ’94; Calabrese &
Cardy ’04] (TrA(ρA) is the partition function of the original
theory!):

A〈φ|ρA|ψ〉A ∼ r

ψ >

φ |< A

|

TrA(ρnA) ∼ Zn =

∫
[dϕ]Mn exp

[
−
∫
Mn

d2x L[ϕ](x)

]

Mn =
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Entanglement Entropy from Twist Fields

In Conformal Field Theory (CFT) the Entanglement
Entropy (EE) may be computed either by:

? using conformal maps and uniformization theorem to map
the partition function on a complicated Riemann surface to
a partition function on the complex plane

? using correlation functions and twist fields which are
completely determined by CFT (at least for two-points)

The first approach does not extend beyond critical systems,
as it uses conformal maps/symmetry

Also, even in CFT mapping to the complex plane is only
possible for one single interval

However it is possible to define correlation functions in any
Quantum Field Theory (QFT) and so expressing the EE in
terms of correlation functions of twist fields provides a
method which may be extended beyond CFT
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Entanglement Entropy from Twist Fields

This is the main reason why in 2007 we decided to take
this approach as our starting point to try and extend the
vast knowledge about EE in CFT to non-critical systems

We have looked at QFTs which are 1+1 dimensional and
which may be viewed as “massive perturbations” of CFT

We call these theories integrable models (e.g. sine-Gordon,
Lee-Yang theories) and they come with a set of “tools” for
computing correlation functions which makes them
particularly attractive

Some of our main results do also hold for generic 1+1
dimensional QFTs [B. Doyon’09]
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Short and Long Distance Behaviour

Recall that [Cardy, OC-A & Doyon’08]:

Zn = Dnε
2dn〈T (0)T̃ (r)〉n , SA = − lim

n→1

d

dn

Zn
Zn1

where Dn is a normalisation constant (D1 = Z1 &D′1 = 0),
and dn is the conformal scaling dimension of T
[Knizhnik’87; Calabrese & Cardy’04]:

dn =
c

12

(
n− 1

n

)

Short distance: 0� r � ξ, logarithmic behavior

〈T (0)T̃ (r)〉n ∼ r−2dn ⇒ SA ∼
c

3
log
(r
ε

)
Large distance: 0� ξ � r, saturation

〈T (0)T̃ (r)〉n ∼ 〈T 〉2n = g2
nm

2dn ⇒ SA ∼ −
c

3
log(mε) + U

with U = −2g′1.
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Correlation Functions from Form Factors

In order to simplify matters let us now think of a QFT
with a single particle spectrum. In the n-replica model,
there will be n particles that we can label by j = 1, . . . , n

The two-point function of branch-point twist fields can be
decomposed as follows, giving a large-distance expansion:

〈T (0)T̃ (r)〉 = 〈gs|T (0)T̃ (r)|gs〉
=

∑
state k

〈gs|T (0)|k〉〈k|T̃ (r)|gs〉

where
∑
k

|k〉〈k| is a sum over a complete set of states in

the Hilbert space of the theory

The matrix elements 〈gs|T (0)|k〉 are called form factors

For integrable models, an specific program exists (form
factor program) that allows their exact computation

However the program needs to be modified to include twist
fields correctly
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Particles and States in 1+1 dimensional QFT

These in- or out-states are denoted by
|θ1, θ2, . . . , θk〉in,outµ1,µ2,...,µk with θ1 > . . . > θk for in-states and
the opposite for out-states, where θi’s are rapidities and
µi’s are particle types

Energy and momentum of these states are the sums of
those of individual particles: E =

∑k
i=0mµi cosh θi and

P =
∑k

i=0mµi sinh θi.

In terms of these states, the generic state |k〉 in our form
factor (FF) expansion is:

|k〉 = |θ1, θ2, . . . , θk〉inµ1...µk

The quantum numbers µ1, . . . , µk will label the copy
number in the replica theory

Olalla A. Castro-Alvaredo, City University London Entanglement Entropy and QFT



Particles and States in 1+1 dimensional QFT

These in- or out-states are denoted by
|θ1, θ2, . . . , θk〉in,outµ1,µ2,...,µk with θ1 > . . . > θk for in-states and
the opposite for out-states, where θi’s are rapidities and
µi’s are particle types

Energy and momentum of these states are the sums of
those of individual particles: E =

∑k
i=0mµi cosh θi and

P =
∑k

i=0mµi sinh θi.

In terms of these states, the generic state |k〉 in our form
factor (FF) expansion is:

|k〉 = |θ1, θ2, . . . , θk〉inµ1...µk

The quantum numbers µ1, . . . , µk will label the copy
number in the replica theory

Olalla A. Castro-Alvaredo, City University London Entanglement Entropy and QFT



Particles and States in 1+1 dimensional QFT

These in- or out-states are denoted by
|θ1, θ2, . . . , θk〉in,outµ1,µ2,...,µk with θ1 > . . . > θk for in-states and
the opposite for out-states, where θi’s are rapidities and
µi’s are particle types

Energy and momentum of these states are the sums of
those of individual particles: E =

∑k
i=0mµi cosh θi and

P =
∑k

i=0mµi sinh θi.

In terms of these states, the generic state |k〉 in our form
factor (FF) expansion is:

|k〉 = |θ1, θ2, . . . , θk〉inµ1...µk

The quantum numbers µ1, . . . , µk will label the copy
number in the replica theory

Olalla A. Castro-Alvaredo, City University London Entanglement Entropy and QFT



Particles and States in 1+1 dimensional QFT

These in- or out-states are denoted by
|θ1, θ2, . . . , θk〉in,outµ1,µ2,...,µk with θ1 > . . . > θk for in-states and
the opposite for out-states, where θi’s are rapidities and
µi’s are particle types

Energy and momentum of these states are the sums of
those of individual particles: E =

∑k
i=0mµi cosh θi and

P =
∑k

i=0mµi sinh θi.

In terms of these states, the generic state |k〉 in our form
factor (FF) expansion is:

|k〉 = |θ1, θ2, . . . , θk〉inµ1...µk

The quantum numbers µ1, . . . , µk will label the copy
number in the replica theory
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Form Factor Programme for Twist Fields

Recall the general commutation relations with the
fundamental fields of the replica model:

ϕi(y)T (x) = T (x)ϕi+1(y) x1 > y1,

ϕi(y)T (x) = T (x)ϕi(y) x1 < y1,

ϕi(y)T̃ (x) = T̃ (x)ϕi−1(y) x1 > y1,

ϕi(y)T̃ (x) = T̃ (x)ϕi(y) x1 < y1.

for i = 1, . . . , n and n+ i ≡ i.

Diagramatically:

rT

(  )

(  ) (0) T
~

ϕ

ϕ
i

+1i

x

x (  )
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Form Factor Programme for Twist Fields

Consider an integrable QFT with one particle, no bound
state, and S-matrix S(θ).

The Form Factor programme for
local fields in integrable QFT was developed long ago
[P. Weisz’77; M. Karowski, P. Weisz’78; F.A. Smirnov’92]

For twist fields [J.L. Cardy, OC-A,B. Doyon’08]

The S-matrix of the replica theory is Sij(θ) = S(θ)δij

The FFs satisfy the monodromy equations:

F
...µiµi+1...

k (. . . , θi, θi+1, . . .) = Sµiµi+1(θi−θi+1)F
...µi+1µi...

k (. . . , θi+1, θi, . . .)

F
µ1µ2...µk
k (θ1 + 2πi, . . . , θk) = F

µ2...µk µ1+1
k (θ2, . . . , θk, θ1)

(0)

θ1θ µ1

+2πi

θ2µ2 µ1

T

1
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Form Factor Programme for Twist Fields

The FFs also satisfy residue equations

−iResθ̄0=θ0
F
µµµ1...µk
k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk) = F

µ1...µk
k (θ1, . . . , θk)

...

kµk0θ0θ µ

πi+

T(0)

...

µ 0θ µ

T(0)

θkµkµ+10θ

πi+

θ

−iResθ̄0=θ0
F
µ µ+1 µ1...µk
k+2 (θ̄0 + iπ, θ0, θ1 . . . , θk)

= −
k∏
i=1

Sµµi(θ0i)F
µ1...µk
k (θ1, . . . , θk)

These equations can be solved recursively as they relate
lower- to higher-particle form factors
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Two-Particle Contribution

〈T (0)T̃ (r)〉 = 〈gs|T (0)T̃ (r)|gs〉

=
∑

state k

〈gs|T (0)|k〉〈k|T̃ (r)|gs〉

= 〈T 〉2 + n
n∑
j=1

∫
dθ1dθ2e

−mr(cosh θ1+cosh θ2)|F 1j
2 (θ1 − θ2)|2 + . . .

= 〈T 〉2
(

1 +
n

4π2

∫ ∞
−∞

f(θ, n)K0(2mr cosh(θ/2)dθ + . . .

)
where

f(θ, n) = 〈T 〉−2
n−1∑
j=0

|F 11
2 (−θ + 2πij)|2

Here we are considering a theory with vanishing
one-particle form factor (even if it was non-vanishing it
would not change the result for the entropy)

Main difficulty: analytically continue f(θ, n) for n ∈ R,
n ≤ 1, then take the derivative at n = 1.
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Analytic Continuation: Examples

We need to evaluate lim
n→1

d

dn
(nf(θ, n))

We need the analytic continuation f̃(θ, n) of f(θ, n) from
n = 1, 2, 3, . . . to n ∈ [1,∞)

Problem: the analytic continuation f̃(θ, n) of f(θ, n) does
not converge uniformly as n→ 1 on θ ∈ R, that is,
f̃(0, 1) 6= f(0, 1) = 0
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Analytic Continuation Resolved

The non-zero value of f̃(0, 1) is due to the collision of poles
of |F 11

2 (2πij)|2 as function of j as n→ 1

πi n2

πi

πi n2

πi2 πi

θ

n 1

θ

−

π

n

i
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Analytic Continuation Performed

Extracting the poles and resuming in j exactly gives:

f̃(θ, n) ∼n→1 f̃(0, 1)

(
iπ(n− 1)

2(θ + iπ(n− 1))
− iπ(n− 1)

2(θ − iπ(n− 1))

)

with

f̃(0, 1) =
1

2

Hence the derivative is supported at θ = 0:

d

dn

(
nf̃(θ, n)

)
n=1

= π2f̃(0, 1)δ(θ)

This gives the universal correction to saturation:

− lim
n→1

d

dn

(
n

4π2

∫ ∞
−∞

f(θ, n)K0(2mr cosh(θ/2)dθ + . . .

)
= −1

8
K0(2mr)
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Analytic Continuation: General Understanding

The two-particle example above gives an indication of the
sort of difficulties that may be encountered when
performing the analytic continuation in n

This example is nice because it can be resolved in the same
way for every 1+1 dimensional QFT (even non integrable
[B. Doyon’09])

There is however no general understanding on how to
perform the analytic continuation for higher particle form
factors in interacting theories (we completely understood
this for the Ising model in [O.C-A & B. Doyon’09])

The problem is also not fully solved for CFT for more
complicated geometries (e.g. several disconnected regions
[P. Calabrese, J.L. Cardy & E. Tonni’09])
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Consistency Checks

Given the above it seems difficult to find the right analytic
continuation in general
However, there are some rather strong consistency checks
we can perform. A good example can be seen below:

Here we are examining the short-distance behaviour of the
two-point function of twist fields from a FF expansion for
the Ising model [O.C-A & B. Doyon’09]
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New Predictions for Quantum Field Theory

We have already seen that a FF computation of the EE
allows us to predict the universal saturation constant as
well as exponentially decaying corrections thereof
This is a deep result as it changes the usual motivation to
study EE. In other words, the EE is not only useful as a
means to characterise critical points, but it can also give us
universal information about the near-critical regime
described by massive QFT
In our most recent work [D. Bianchini, O.C-A & B.
Doyon’15] we have also discovered that the EE may allow
us to tell unitary from non-unitary critical points apart by
examining the leading correction to saturation of the EE
For the Lee-Yang theory this is given by

S(r) = −ceff

3
log(mε)+U− 2

πf(2πi
3 , 1)2

(
1√
3
− 13π

108

)
︸ ︷︷ ︸

0.0769782

K0(mr)+· · ·
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Numerical Tests

Let us go back to our original set-up, that is the
bi-partitioned quantum spin chain

A

s x i+1s xxi−1s x i+L−1s x i+Ls
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Consider the following two models:

HIsing = −J
2

N∑
i=1

(
σxi σ

x
i+1 + hσzi

)
HXXZ = J

N∑
i=1

(
σxi σ

x
i+1 + σyi σ

y
i+1 + ∆σzi σ

z
i+1

)
Using either exact diagonalization (for Ising) or DMRG
(for XXZ) we may compute the EE for each of these
models near (but away from) their critical points [O.C-A,
B. Doyon & E. Levi’12]
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Bessel Functions and Particle Counting

The numerical results are shown below:

In the first figure, numerical results are fitted to the
function 1/8K0(2L/ξ) with very good agreement. This is
what we would expect for the Ising model

In the second figure, numerical results are fitted to the
function 1/4K0(2L/ξ) with good agreement. This is what
we would expect for the sine-Gordon model, which has two
fundamental particles of equal mass
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Conclusions

QFT techniques are a powerful tool for predicting the
scaling behaviour of the entropy of both critical and
non-critical systems

The EE encapsulates information about the particle
spectrum of non-critical theories in 1+1 dimensions

Many open problems remain in this area which is still
dominated by the investigation of critical systems

A natural next step is to look at other measures of
entanglement which are more natural for mixed states (e.g.
negativity), consider the EE of excited states and/or
disconnected regions
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