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Background:

o This talk will mainly be a review of the most important
research directions regarding measures of entanglement in
141 dimensional relativistic QFTs.

o My main contribution to the topic of Logarithmic
Negativity is:

Olivier Blondeau-Fournier, OCA and Benjamin Doyon,
Universal scaling of the logarithmic negativity in massive
quantum field theory, arXiv:1508.04026.
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Background:

o This talk will mainly be a review of the most important
research directions regarding measures of entanglement in
141 dimensional relativistic QFTs.

o My main contribution to the topic of Logarithmic
Negativity is:

Olivier Blondeau-Fournier, OCA and Benjamin Doyon,
Universal scaling of the logarithmic negativity in massive
quantum field theory, arXiv:1508.04026.

@ Throughout the talk I will also refer to some previous
work, especially our first paper on the subject:

John L. Cardy, OCA and Benjamin Doyon, Form factors of
branch-point twist fields in quantum integrable models and
entanglement entropy, J. Stat. Phys. 130 (2008) 129-168.
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Entanglement in quantum mechanics

@ A quantum system is in an entangled state if performing a
localised measurement (in space and time) may
instantaneously affect local measurements far away.
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Entanglement in quantum mechanics

@ A quantum system is in an entangled state if performing a
localised measurement (in space and time) may
instantaneously affect local measurements far away.

A typical example: a pair of opposite-spin electrons:

1
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Entanglement in quantum mechanics

@ A quantum system is in an entangled state if performing a
localised measurement (in space and time) may
instantaneously affect local measurements far away.

A typical example: a pair of opposite-spin electrons:

1
V2
o What is special: Bell’s inequality says that this cannot be

described by local variables.

e A situation that looks similar to |¢) but without
entanglement is a factorizable state:
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o States of this type are known as pure states.

1 Features of the Ne



States of this type are known as pure states. Mixed
states are described by density matrices

p = Zpa|¢a><wa| ’ <A>

A~

Tr(pA)

(for pure states, p = |¢)(¢|; for finite temperature,
p = e H/KT).
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e States of this type are known as pure states. Mixed
states are described by density matrices

p = Zpa|¢a><wa| ’ <A>

A~

Tr(pA)

for pure states, p = ; for finite temperature,
p p
p= efH/kT)'

@ These examples are extremely simple but what happens in
extended many-body quantum systems?
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@ States of this type are known as pure states. Mixed
states are described by density matrices

p= Zpa|wa><¢a| ) <A> = Tl“(pA)

(for pure states, p = [¢)(¢]; for finite temperature,
_ —H/KT
p=e ).
@ These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]
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o States of this type are known as pure states. Mixed
states are described by density matrices

p= Zpa|¢a>(¢a| ’ <A> = Tl"(pA)

(for pure states, p = |¢)(¢]; for finite temperature,
_ —H/kT
p=e ).
o These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

@ Should be an entanglement monotone: should not increase
under LOCC

Jastro-Alvaredo, City University London Universal Features of the Negativity



o States of this type are known as pure states. Mixed
states are described by density matrices

p= Zpa\%)(i/fa’ ’ <A> = TT(PA)

(for pure states, p = |¢)(¢|; for finite temperature,
p = e H/KTY,

@ These examples are extremely simple but what happens in
extended many-body quantum systems?

o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

@ Should be an entanglement monotone: should not increase
under LOCC
@ Should be invariant under unitary transformations
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@ States of this type are known as pure states. Mixed
states are described by density matrices

pP= Zpawa><wa’ , (A) = Tr(pd)

(for pure states, p = |¢)(¢|; for finite temperature,
_ —H/KT
p=e ).
o These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

@ Should be an entanglement monotone: should not increase
under LOCC

© Should be invariant under unitary transformations

@ Should vanish for separable states
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@ States of this type are known as pure states. Mixed
states are described by density matrices

pP= Zpawa><wa’ , (A) = Tr(pd)

(for pure states, p = |¢)(¢|; for finite temperature,
_ _—H/KT
p=e ).
o These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]
@ Should be an entanglement monotone: should not increase
under LOCC
© Should be invariant under unitary transformations
@ Should vanish for separable states
@ Should not vanish for non-separable states
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States of this type are known as pure states. Mixed
states are described by density matrices

p = Zpa|¢a><wa| ’ <A>

A~

Tr(pA)

(for pure states, p = |¢)(¢|; for finite temperature,
_ —H/kT
p=e ).
These examples are extremely simple but what happens in
extended many-body quantum systems?

First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

The bi-partite entanglement entropy [Bennett et al.’96] and
the logarithmic negativity [Vidal & Werner’01; Plenio’05]
are good measures of entanglement according to these
properties

Jastro-Alvaredo, City University London Universal Features of the Negativity



Bi-partite Entanglement Entropy (EE)

o Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L
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Bi-partite Entanglement Entropy (EE)

o Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L
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A

ro-Alvaredo, City University London Universal Features of the Negativity



Bi-partite Entanglement Entropy (EE)

@ Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L

® 6 ® o ¢ o ¢ » o o
81X 881X RSi X SiL
%K_y

A

then we define

Von Neumann Entanglement Entropy

Sa = —Tra(palog(pa)) with pa=Trz(|¥)(¥|)

|¥) ground state and py the reduced density matrix.
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Bi-partite Entanglement Entropy (EE)

o Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L

® 6 ® o ¢ o ¢ » o o
81X 8i®8i X RS- XSiL
RK_J

A

then we define

Von Neumann Entanglement Entropy

Sa=—Tra(palog(pa)) with pa=Trz(|¥)(¥|)

|¥) ground state and p4 the reduced density matrix.
@ Other entropies may also be defined such as

Other Entropies
SRényi - 10g(TrA(pZLl)) STsallis _ 1-— TI.A(pZX)
A - 1 _ . A - 1

)

1—n n—1
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Bi-partite Entanglement Entropy (EE)

@ Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L

® 6 ® 6 & o o » o o
8 ® Si®Si® - ®Si XS
RK_J

A

Cd .
Sa=—Tra(palog(pa)) = — lim —Tru(p})

n—1 dn

o For general QFTs the “replica trick” naturally leads to the
notion of replica theories on multi-sheeted Riemann
surfaces = interpretation of Tra(p})
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Some Motivation to Study the EE in QFT
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system

e At critical points (CFT) and near critical points (QFT) it
displays universal behaviour
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system

e At critical points (CFT) and near critical points (QFT) it
displays universal behaviour

@ The best known motivation to study the EE relates to its
behaviour at quantum critical points [Holzhey, Larsen &
Wilczek’94; Vidal, Latorre, Rico & Kitaev’03; Calabrese &
Cardy’04; Bianchini et al.’15]:

S(L) ~ Ce?ﬁ logL = information about the CFT

Coff 1s the (effective) central change which uniquely
characterises the CFT
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system

e At critical points (CFT) and near critical points (QFT) it
displays universal behaviour

@ The best known motivation to study the EE relates to its
behaviour at quantum critical points [Holzhey, Larsen &
Wilczek’94; Vidal, Latorre, Rico & Kitaev’03; Calabrese &
Cardy’04; Bianchini et al.’15]:

S(L) ~ Ce?ﬁ logL = information about the CFT

Coff 1s the (effective) central change which uniquely
characterises the CFT

o Computing the EE is claimed to be the most efficient
numerical approach to classifying critical points!
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Example: the Ising model
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Example: the Ising model

g
5 Z ofof 1 + ho?)
1=1

@ We may carry out
the “scaling limit” of
this theory in two
different ways:
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Example: the Ising model

g
5 Z ofof 1 + ho?)
1=1

@ We may carry out
the “scaling limit” of
this theory in two
different ways:

@ Set h =1 from the
beginning: then
¢ = oo and in the
limit N — oo this is
a critical model.
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Example: the Ising model

g o Take h > 1: £ oc m™! finite but
5 Z ofof 1 + ho?) large. Taking N — oo while L/¢
i=1 is finite we obtain Ising field
theory.

@ We may carry out
the “scaling limit” of
this theory in two
different ways:

@ Set h =1 from the
beginning: then
¢ = oo and in the
limit N — oo this is
a critical model.
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Example: the Ising model

g
EZ ofof 1 + ho?)
1=1

@ We may carry out
the “scaling limit” of
this theory in two
different ways:

@ Set h =1 from the
beginning: then
¢ = oo and in the
limit N — oo this is
a critical model.

o Take h > 1: £ oc m™! finite but

large. Taking N — oo while L/¢
is finite we obtain Ising field
theory.

=] o
P s
IR
cogm
2R3
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Example: the Ising model

g o Take h > 1: £ oc m™! finite but
5 Z ofof 1 + ho?) large. Taking N — oo while L/¢
i=1 is finite we obtain Ising field
theory.

@ We may carry out

the “scaling limit” of =

this theory in two Ak gz /
different ways: ~ ‘

@ Set h =1 from the
beginning: then
& = 0o and in the

limit N — oo this is 0 70 20 30 40 50 60 70
a critical model.

P s
IR

o S(L)= 25000 Jog L +0.478551
for h = 1. For h > 1 saturation is
reached [Vidal, Latorre, Rico &
Kitaev’03; Levi, OCA, Doyon’12].
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More complex configurations

o Everything we have said so far refers to the EE of one
interval. If the regions A and A are not simply connected,
then the EE is much more difficult to compute.
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More complex configurations

o Everything we have said so far refers to the EE of one
interval. If the regions A and A are not simply connected,
then the EE is much more difficult to compute.

A A A

AT AL A A A,

A Al A Ay Ay Ay Ay
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More complex configurations

o Everything we have said so far refers to the EE of one
interval. If the regions A and A are not simply connected,
then the EE is much more difficult to compute.

A A A

AT AL A A A,

A Al A A, Ay Ay A,

@ The figures represent the one interval, double interval and
triple interval configurations.
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More complex configurations

o Everything we have said so far refers to the EE of one
interval. If the regions A and A are not simply connected,
then the EE is much more difficult to compute.

A A A

AT AL A A A,

A Al A A, Ay Ay A,

@ The figures represent the one interval, double interval and
triple interval configurations.

@ These configurations have been studied by various people
in CFT, especially in the works of [Calabrese, Cardy and
Tonni’12’13’14].
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Logarithmic Negativity (LN)
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C

Logarithmic Negativity

€ = log TI"AUB‘PQLBJB’ with  paup = Tre(|¥)(¥])

e Where Tr|p| represents the sum of the absolute values of
the eigenvalues of p and T’g represents “partial
transposition”
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C

Logarithmic Negativity

€ =log Trauplpylpl with paus = Tro(|U)(V])

e Where Tr|p| represents the sum of the absolute values of
the eigenvalues of p and Tp represents “partial
transposition”

e |U) is the state of the whole system (for pure states)

>-Alvaredo, City University London Universal Features of the Negativity



Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

e The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C

@ There is also a “replica” approach to the computation of
the negativity [Calabrese, Cardy & Tonni’12]:

Logarithmic Negativity from the Replica Trick

Eln] = log Traup(p’?p)" then & = lim &.[n]

n—1

where &.[n] means the function £[n] for n even. This limit
requires analytic continuation from n even ton =1
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Partition functions on multi-sheeted Riemann surfaces

o For integer numbers n of replicas, in the scaling limit, this
is a partition function on a Riemann surface [Callan &
Wilczek '94; Holzhey, Larsen & Wilczek '94; Calabrese &
Cardy ’04] (Tra(pa) is the partition function of the original
theory!):

hy >
<0l A
r {

A(@lpal)a ~

n

Tealoh) ~ 2= [l |- [ o Lidlo)
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A T . d
Zp = Dpe™ > (T(O)T(r))n, Sa=-—lim—2,

n—1dn
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A, 7 i d
Zp, = Dpe™ > (TOO)T(r))n, Sa= —7111_)1111 %Zn
where D,, is a normalisation constant, and A, is the
conformal dimension of 7" [Knizhnik’87; Dixon et al.’87,;
Calabrese & Cardy’04]:

c 1
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A, 7 i d
Zp, = Dpe™ > (TOO)T(r))n, Sa= —7111_)1111 %Zn
where D,, is a normalisation constant, and A, is the
conformal dimension of 7" [Knizhnik’87; Dixon et al.’87,;
Calabrese & Cardy’04]:

c 1

A, = — - =
"4 <n n)
e Short distance: 0 < r < &, logarithmic behavior
(TOT(r))n ~r 8" = Sy~ glog (i)

9
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A, 7 i d
Zp, = Dpe™ > (TOO)T(r))n, Sa= —7111_)1111 %Zn
where D,, is a normalisation constant, and A, is the
conformal dimension of 7" [Knizhnik’87; Dixon et al.’87,;
Calabrese & Cardy’04]:

c 1

e Short distance: 0 < r < &, logarithmic behavior
(TOT ()~ 14 5 4~ 10g(7)

5
e Large distance: 0 < & < r, saturation

(TO)T (1)) ~ (T2 = Sa~ —<log(me) + U
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Main Properties of Twist Fields

o The Twist Fields are defined through very general
commutation relations with the fundamental field of the
model [Cardy, OCA & Doyon’08]:

Q(y)T(z) = T(x)Pit1(y) z' >yl
Oi(y)T(x) = T(x)®i(y) ' <y
‘Pi(y)f(ﬂﬂ) = 7:’(90)‘1’2'—1(.@) a' >y,
Oi(y)T(x) = T(x)®i(y) ' <y’

fori=1,...,nand n+1i = 1.
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Main Properties of Twist Fields

o The Twist Fields are defined through very general
commutation relations with the fundamental field of the
model [Cardy, OCA & Doyon’08]:

()T (x) = T(x)Pit1(y) z' >yl
i(y)T(z) = T(x)®i(y) z' <y
(2)®;-1(y) a' >y,
(z)®i(y) ' <yl

fori=1,...,nand n+1i = 1.

()T = T
Q;(y)T(x) = T

o Diagramatically:

da(y)
[} A Sy
W [
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Entropy from Form Factors

@ The two-point function of branch-point twist fields can be
decomposed into the in-basis, giving a large-distance
expansion:

(TO)T (1))n = (vac|T(0)T (r)|vac) =
- Zk:l my,; cosh0;

> " dby - - - dby,
> > /t27r)k|F151’ (0,00 P =

k=0 i1t =1

where

F{b 0y, 0) = (vac T(0)[6r, ., 04) 0

H1ses ks

are the k-particle form factors of the twist-field 7.
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Entropy from Form Factors

@ The two-point function of branch-point twist fields can be
decomposed into the in-basis, giving a large-distance
expansion:

(TO)T (1))n = (vac|T(0)T (r)|vac) =
- Zk:l my,; cosh0;

> " dby - - - dby,
> > /t27r)k|F151’ (0,00 P =

k=0 i1t =1

where

F{b 0y, 0) = (vac T(0)[6r, ., 04) 0

TR
are the k-particle form factors of the twist-field 7.

o Typically the expansion is rapidly convergent in k for large
r (short-distance expansion).
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Entropy from Form Factors

@ The two-point function of branch-point twist fields can be
decomposed into the in-basis, giving a large-distance
expansion:

(TO)T (1))n = (vac|T(0)T (r)|vac) =
- Zk:l my,; cosh0;

> " dby - - - dby,
> > /t27r)k|F151’ (0,00 P =

k=0 i1t =1

where

F{b 0y, 0) = (vac T(0)[6r, ., 04) 0

By e
are the k-particle form factors of the twist-field 7.

o Typically the expansion is rapidly convergent in k for large
r (short-distance expansion).

@ These form factors can be computed as the solutions to a
set of consistency equations which we formulated in our
first paper [Cardy, OCA & Doyon’08].
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

=
all

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.

o An interesting limit is limy, 5., 7 (r2)7 (r3) ~ T%(r3) where
T2 is defined as the twist field associated to the cyclic
permutation j — j — 2.
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.

o An interesting limit is limy, 5., 7 (r2)7 (r3) ~ T%(r3) where
T2 is defined as the twist field associated to the cyclic
permutation j — j — 2. This field has very different
properties depending on whether n is even or odd!
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.

o An interesting limit is limy, 5., 7 (r2)7 (r3) ~ T%(r3) where
T2 is defined as the twist field associated to the cyclic
permutation j — j — 2. This field has very different
properties depending on whether n is even or odd!

e Calabrese et al. showed that (if 7o = r3 = 0) then:

g="¢ log ( i ) + constant
4 1+ 74
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LN in Massive QFT: Adjacent Regions

@ In our work we have studied two simple limits of the LN in
a completely generic 1+1 dimensional QFT. Let us look at
one of them:
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LN in Massive QFT: Adjacent Regions

@ In our work we have studied two simple limits of the LN in
a completely generic 1+1 dimensional QFT. Let us look at
one of them:

e Adjacent regions (one semi-infinite region): r3 — ro :=r
and r4 — oo and we will choose r;1 =0

£+ n) = 1og (" 45 (T(O)T2(r))n(T)n )

2A% is the conformal dimension of 72 for n even.
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LN in Massive QFT: Adjacent Regions

@ In our work we have studied two simple limits of the LN in
a completely generic 1+1 dimensional QFT. Let us look at
one of them:

e Adjacent regions (one semi-infinite region): r3 — ro :=r
and r4 — oo and we will choose r;1 =0

£+ n) = 1og (" 45 (T(O)T2(r))n(T)n )

2A% is the conformal dimension of 72 for n even.

C A B
Te) T Iy —00
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e For adjacent regions, we found:
gt om0 zlog(r/s)
mr>1  C _ 2 —Zmr
= 1 log(me) + Esat 3V5n za: Ko(V3mar) + O(e )
with Z > /3, m := m; the smallest mass in the spectrum,

{mq} the mass spectrum and &g, a universal saturation
constant given by:

Ewi = 2l0g (M¥(T)1) ~log(C1)  and ) = lim CF7

1
2
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e This means that the negativity (as the EE) can provide
information about the mass spectrum of QFT

@ Numerical simulations in gapped and critical quantum spin
chain models could be used to extract information about
the VEVs, the structure constant and the mass spectrum
of any 1+1 dimensional massive QFT
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The results are very simple and hold in this form for any
141 dimensional QFT (integrable or not)

The technical reason for this is that they only depend on
the pole structure of the twist field matrix elements and of
the S-matrix, not on the details of the theory

This means that the negativity (as the EE) can provide
information about the mass spectrum of QFT

Numerical simulations in gapped and critical quantum spin
chain models could be used to extract information about
the VEVs, the structure constant and the mass spectrum
of any 1+1 dimensional massive QFT

Such numerical checks have been carried out for the EE
[Levi, OCA & Doyon’12; Sirker et al.’14]
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Remarks

(]

The results are very simple and hold in this form for any
141 dimensional QFT (integrable or not)

The technical reason for this is that they only depend on
the pole structure of the twist field matrix elements and of
the S-matrix, not on the details of the theory

This means that the negativity (as the EE) can provide
information about the mass spectrum of QFT

Numerical simulations in gapped and critical quantum spin
chain models could be used to extract information about
the VEVs, the structure constant and the mass spectrum
of any 1+1 dimensional massive QFT

Such numerical checks have been carried out for the EE
[Levi, OCA & Doyon’12; Sirker et al.’14]

In order to obtain these results, it was necessary to develop
an approach to the analytic continuation in n.
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Analytic continuation in QFT

e Sums of the form Z?:/? ({6},n) — ¢ cot(mz) f({0},2)d=.
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@ Uniqueness? Yes, up to Carlson’s theorem! “two different
analytic functions which do not grow very fast at infinity
can not coincide at the integers”
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Analytic continuation in QFT

e Sums of the form Z?:/? ({6},n) — ¢ cot(mz) f({0},2)d=.

@ Uniqueness? Yes, up to Carlson’s theorem! “two different
analytic functions which do not grow very fast at infinity
can not coincide at the integers”

o The functions f({f},n) have certain properties as n — 1
which we can use.

e Starting at n large and approaching n = 1 poles of the
functions f({0},n) on the rapidities may cross the real line.
Since the form factor expansion involves integration over
the full real line over all rapidities it follows that the
residues of these poles must be added!
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Conclusion & Outlook

o Although a full computation of the LN for 1+1 dimensional
QFTs remains challenging, we have shown that in
particular limits it exhibits remarkable universality
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o Work on measures of entanglement contributes to our
understanding of the fundamental properties of ground
states in QFT
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Conclusion & Outlook

o Although a full computation of the LN for 1+1 dimensional
QFTs remains challenging, we have shown that in
particular limits it exhibits remarkable universality

o In particular, its leading large-r behaviour is fully
determined by the mass spectrum of the QFT

o Work on measures of entanglement contributes to our
understanding of the fundamental properties of ground
states in QFT

o It also leads to interesting mathematical problems relating
to the analytic continuation of functions of many complex
variables
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