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Background:

o This talk is mainly based on the recent paper:

Olivier Blondeau-Fournier, Olalla Castro-Alvaredo and
Benjamin Doyon, Universal scaling of the logarithmic
negativity in massive quantum field theory,
arXiv:1508.04026.
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Background:

o This talk is mainly based on the recent paper:

Olivier Blondeau-Fournier, Olalla Castro-Alvaredo and
Benjamin Doyon, Universal scaling of the logarithmic
negativity in massive quantum field theory,
arXiv:1508.04026.

o Throughout the talk I will also refer to some previous
work, especially our first paper on the subject:

John L. Cardy, Olalla Castro-Alvaredo and Benjamin
Doyon, Form factors of branch-point twist fields in
quantum integrable models and entanglement entropy,

J. Stat. Phys. 130 (2008) 129-168.
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Entanglement in quantum mechanics

@ A quantum system is in an entangled state if performing a
localised measurement (in space and time) may
instantaneously affect local measurements far away.
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Entanglement in quantum mechanics

@ A quantum system is in an entangled state if performing a
localised measurement (in space and time) may
instantaneously affect local measurements far away.

A typical example: a pair of opposite-spin electrons:

1
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Entanglement in quantum mechanics

@ A quantum system is in an entangled state if performing a
localised measurement (in space and time) may
instantaneously affect local measurements far away.

A typical example: a pair of opposite-spin electrons:

1
V2
o What is special: Bell’s inequality says that this cannot be

described by local variables.

e A situation that looks similar to |¢) but without
entanglement is a factorizable state:

% T+ 1)), (A = (WAlp)
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o States of this type are known as pure states.

1 Features of the Ne



States of this type are known as pure states. Mixed
states are described by density matrices

p = Zpa|¢a><wa| ’ <A>

A~

Tr(pA)

(for pure states, p = |¢)(¢|; for finite temperature,
p = e H/KT).
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e States of this type are known as pure states. Mixed
states are described by density matrices

p = Zpa|¢a><wa| ’ <A>

A~

Tr(pA)

for pure states, p = ; for finite temperature,
p p
p= efH/kT)'

@ These examples are extremely simple but what happens in
extended many-body quantum systems?

Jastro-Alvaredo, City University London Universal Features of the Negativity



@ States of this type are known as pure states. Mixed
states are described by density matrices

p= Zpa|wa><¢a| ) <A> = Tl“(pA)

(for pure states, p = [¢)(¢]; for finite temperature,
_ —H/KT
p=e ).
@ These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]
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o States of this type are known as pure states. Mixed
states are described by density matrices

p= Zpa|¢a>(¢a| ’ <A> = Tl"(pA)

(for pure states, p = |¢)(¢]; for finite temperature,
_ —H/kT
p=e ).
o These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

@ Should be an entanglement monotone: should not increase
under LOCC
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o States of this type are known as pure states. Mixed
states are described by density matrices

p= Zpa\%)(i/fa’ ’ <A> = TT(PA)

(for pure states, p = |¢)(¢|; for finite temperature,
p = e H/KTY,

@ These examples are extremely simple but what happens in
extended many-body quantum systems?

o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

@ Should be an entanglement monotone: should not increase
under LOCC
@ Should be invariant under unitary transformations
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@ States of this type are known as pure states. Mixed
states are described by density matrices

pP= Zpawa><wa’ , (A) = Tr(pd)

(for pure states, p = |¢)(¢|; for finite temperature,
_ —H/KT
p=e ).
o These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

@ Should be an entanglement monotone: should not increase
under LOCC

© Should be invariant under unitary transformations

@ Should vanish for separable states
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@ States of this type are known as pure states. Mixed
states are described by density matrices

pP= Zpawa><wa’ , (A) = Tr(pd)

(for pure states, p = |¢)(¢|; for finite temperature,
_ _—H/KT
p=e ).
o These examples are extremely simple but what happens in
extended many-body quantum systems?
o First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]
@ Should be an entanglement monotone: should not increase
under LOCC
© Should be invariant under unitary transformations
@ Should vanish for separable states
@ Should not vanish for non-separable states
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States of this type are known as pure states. Mixed
states are described by density matrices

p = Zpa|¢a><wa| ’ <A>

A~

Tr(pA)

(for pure states, p = |¢)(¢|; for finite temperature,
_ —H/kT
p=e ).
These examples are extremely simple but what happens in
extended many-body quantum systems?

First of all, what provides a good measure of
entanglement? [Plenio & Virmani’05]

The bi-partite entanglement entropy [Bennett et al.’96] and
the logarithmic negativity [Vidal & Werner’01; Plenio’05]
are good measures of entanglement according to these
properties
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Bi-partite Entanglement Entropy (EE)

o Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L
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Bi-partite Entanglement Entropy (EE)

o Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L

® 6 ® 6 & o o » o o
81 ® $i®S B o RS X SipL
%ﬁ_y
A
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Bi-partite Entanglement Entropy (EE)

@ Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L

® 6 ® o ¢ o ¢ » o o
81X 881X RSi X SiL
%K_y

A

then we define

Von Neumann Entanglement Entropy

Sa = —Tra(palog(pa)) with pa=Trz(|¥)(¥|)

|¥) ground state and py the reduced density matrix.
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Bi-partite Entanglement Entropy (EE)

o Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L

® 6 ® o ¢ o ¢ » o o
81X 8i®8i X RS- XSiL
RK_J

A

then we define

Von Neumann Entanglement Entropy

Sa=—Tra(palog(pa)) with pa=Trz(|¥)(¥|)

|¥) ground state and p4 the reduced density matrix.
@ Other entropies may also be defined such as

Other Entropies
SRényi - 10g(TrA(pZLl)) STsallis _ 1-— TI.A(pZX)
A - 1 _ . A - 1

)

1—n n—1
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Bi-partite Entanglement Entropy (EE)

@ Let us consider a spin chain of length N, subdivided into
regions A and A of lengths L and N — L

® 6 ® 6 & o o » o o
8 ® Si®Si® - ®Si XS
RK_J

A

Cd .
Sa=—Tra(palog(pa)) = — lim —Tru(p})

n—1 dn

o For general QFTs the “replica trick” naturally leads to the
notion of replica theories on multi-sheeted Riemann
surfaces = interpretation of Tra(p})
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Some Motivation to Study the EE in QFT
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system

e At critical points (CFT) and near critical points (QFT) it
displays universal behaviour
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system

e At critical points (CFT) and near critical points (QFT) it
displays universal behaviour

@ The best known motivation to study the EE relates to its
behaviour at quantum critical points [Holzhey, Larsen &
Wilczek’94; Vidal, Latorre, Rico & Kitaev’03; Calabrese &
Cardy’04; Bianchini et al.’15]:

S(L) ~ Ce?ﬁ logL = information about the CFT

Coff 1s the (effective) central change which uniquely
characterises the CFT
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Some Motivation to Study the EE in QFT

o The EE provides information about the state of a quantum
system

e At critical points (CFT) and near critical points (QFT) it
displays universal behaviour

@ The best known motivation to study the EE relates to its
behaviour at quantum critical points [Holzhey, Larsen &

Wilczek’94; Vidal, Latorre, Rico & Kitaev’03; Calabrese &
Cardy’04; Bianchini et al.’15]:

S(L) ~ Ce?ﬁ logL = information about the CFT

Coff 1s the (effective) central change which uniquely
characterises the CFT

o Computing the EE is now the most efficient numerical
approach to classifying critical points!
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Example: the Ising model
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Example: the Ising model

g
5 Z ofof 1 + ho?)
1=1

@ We may carry out
the “scaling limit” of
this theory in two
different ways:
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Example: the Ising model

g
5 Z ofof 1 + ho?)
1=1

@ We may carry out
the “scaling limit” of
this theory in two
different ways:

@ Set h =1 from the
beginning: then
¢ = oo and in the
limit N — oo this is
a critical model.
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Example: the Ising model

g o Take h > 1: £ oc m™! finite but
5 Z ofof 1 + ho?) large. Taking N — oo while L/¢
i=1 is finite we obtain Ising field
theory.

@ We may carry out
the “scaling limit” of
this theory in two
different ways:

@ Set h =1 from the
beginning: then
¢ = oo and in the
limit N — oo this is
a critical model.
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Example: the Ising model

g
EZ ofof 1 + ho?)
1=1

@ We may carry out
the “scaling limit” of
this theory in two
different ways:

@ Set h =1 from the
beginning: then
¢ = oo and in the
limit N — oo this is
a critical model.

o Take h > 1: £ oc m™! finite but

large. Taking N — oo while L/¢
is finite we obtain Ising field
theory.

=] o
P s
IR
cogm
2R3
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Example: the Ising model

g o Take h > 1: £ oc m™! finite but
5 Z ofof 1 + ho?) large. Taking N — oo while L/¢
i=1 is finite we obtain Ising field
theory.

@ We may carry out

the “scaling limit” of =

this theory in two Ak gz /
different ways: ~ ‘

@ Set h =1 from the
beginning: then
& = 0o and in the

limit N — oo this is 0 70 20 30 40 50 60 70
a critical model.

P s
IR

o S(L)= 25000 Jog L +0.478551
for h = 1. For h > 1 saturation is
reached [Vidal, Latorre, Rico &
Kitaev’03; Levi, OCA, Doyon’12].
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Logarithmic Negativity (LN)
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C

Logarithmic Negativity

€ = log TI"AUB‘PQLBJB’ with  paup = Tre(|¥)(¥])

e Where Tr|p| represents the sum of the absolute values of
the eigenvalues of p and T’g represents “partial
transposition”
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

@ The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C

Logarithmic Negativity

€ =log Trauplpylpl with paus = Tro(|U)(V])

e Where Tr|p| represents the sum of the absolute values of
the eigenvalues of p and Tp represents “partial
transposition”

e |U) is the state of the whole system (for pure states)
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Logarithmic Negativity (LN)

o The EE is a good measure of entanglement for pure states.
What about mixed states?

e The LN provides a good measure of entanglement in mixed
states for non-complementary regions such as A and B
[Vidal, Werner’01; Plenio’05]

C A C B C

@ There is also a “replica” approach to the computation of
the negativity [Calabrese, Cardy & Tonni’12]:

Logarithmic Negativity from the Replica Trick

Eln] = log Traup(p’?p)" then & = lim &.[n]

n—1

where &.[n] means the function £[n] for n even. This limit
requires analytic continuation from n even ton =1
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Partition functions on multi-sheeted Riemann surfaces

o For integer numbers n of replicas, in the scaling limit, this
is a partition function on a Riemann surface [Callan &
Wilczek '94; Holzhey, Larsen & Wilczek '94; Calabrese &
Cardy ’04] (Tra(pa) is the partition function of the original
theory!):

hy >
<0l A
r {

A(@lpal)a ~

n

Tealoh) ~ 2= [l |- [ o Lidlo)
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A T . d
Zp = Dpe™ > (T(O)T(r))n, Sa=-—lim—2,

n—1dn
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A, 7 i d
Zp, = Dpe™ > (TOO)T(r))n, Sa= —7111_)1111 %Zn
where D,, is a normalisation constant, and A, is the
conformal dimension of 7" [Knizhnik’87; Dixon et al.’87,;
Calabrese & Cardy’04]:

c 1
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A, 7 i d
Zp, = Dpe™ > (TOO)T(r))n, Sa= —7111_)1111 %Zn
where D,, is a normalisation constant, and A, is the
conformal dimension of 7" [Knizhnik’87; Dixon et al.’87,;
Calabrese & Cardy’04]:

c 1

A, = — - =
"4 <n n)
e Short distance: 0 < r < &, logarithmic behavior
(TOT(r))n ~r 8" = Sy~ glog (i)

9
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Branch Point Twist Fields

o For general 1+1 dimensional QFT we have found
[Calabrese, Cardy’04; Cardy, OCA & Doyon’08] that the
EE may be expressed in terms of a two-point function of
twist fields:

4A, 7 i d
Zp, = Dpe™ > (TOO)T(r))n, Sa= —7111_)1111 %Zn
where D,, is a normalisation constant, and A, is the
conformal dimension of 7" [Knizhnik’87; Dixon et al.’87,;
Calabrese & Cardy’04]:

c 1

e Short distance: 0 < r < &, logarithmic behavior
(TOT ()~ 14 5 4~ 10g(7)

5
e Large distance: 0 < & < r, saturation

(TO)T (1)) ~ (T2 = Sa~ —<log(me) + U
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Main Properties of Twist Fields

o The Twist Fields are defined through very general
commutation relations with the fundamental field of the
model [Cardy, OCA & Doyon’08]:

Q(y)T(z) = T(x)Pit1(y) z' >yl
Oi(y)T(x) = T(x)®i(y) ' <y
‘Pi(y)f(ﬂﬂ) = 7:’(90)‘1’2'—1(.@) a' >y,
Oi(y)T(x) = T(x)®i(y) ' <y’

fori=1,...,nand n+1i = 1.
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Main Properties of Twist Fields

o The Twist Fields are defined through very general
commutation relations with the fundamental field of the
model [Cardy, OCA & Doyon’08]:

()T (x) = T(x)Pit1(y) z' >yl
i(y)T(z) = T(x)®i(y) z' <y
(2)®;-1(y) a' >y,
(z)®i(y) ' <yl

fori=1,...,nand n+1i = 1.

()T = T
Q;(y)T(x) = T

o Diagramatically:

da(y)
[} A Sy
W [
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

=
all

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.

Olalla A. Castro-Alvaredo, City University London Universal Features of the Negativity



Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.

o An interesting limit is limy, 5., 7 (r2)7 (r3) ~ T%(r3) where
T2 is defined as the twist field associated to the cyclic
permutation j — j — 2.
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.

o An interesting limit is limy, 5., 7 (r2)7 (r3) ~ T%(r3) where
T2 is defined as the twist field associated to the cyclic
permutation j — j — 2. This field has very different
properties depending on whether n is even or odd!
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Logarithmic Negativity from Twist Fields

@ The twist field approach has been used in the study of the
LN of CFT [Calabrese, Cardy & Tonni’12'13’14]

Logarithmic Negativity from Twist Fields

En) = log (¥4 (T (r))T(ra) T (r3) T (r4))n)

@ This 4-point function has been investigated in CFT but the
analytic continuation remains challenging, even for free
theories.

o An interesting limit is limy, 5., 7 (r2)7 (r3) ~ T%(r3) where
T2 is defined as the twist field associated to the cyclic
permutation j — j — 2. This field has very different
properties depending on whether n is even or odd!

e Calabrese et al. showed that (if 7o = r3 = 0) then:

g="¢ log ( i ) + constant
4 1+ 74
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LN in Massive QFT: Adjacent Regions

o In our work we have studied two simple limits of the LN in
a completely generic 1+1 dimensional QFT
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LN in Massive QFT: Adjacent Regions

o In our work we have studied two simple limits of the LN in
a completely generic 1+1 dimensional QFT

e Adjacent regions (one semi-infinite region): r3 — ro :=r
and r4 — oo and we will choose r;1 =0

£ n) = 1og (" A (T(O)T2(r))n(T)n )

2A% is the conformal dimension of 72 for n even.
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LN in Massive QFT: Adjacent Regions

o In our work we have studied two simple limits of the LN in
a completely generic 1+1 dimensional QFT

e Adjacent regions (one semi-infinite region): r3 — ro :=r
and r4 — oo and we will choose r;1 =0

£ n) = 1og (" A (T(O)T2(r))n(T)n )

2A% is the conformal dimension of 72 for n even.

C A B
,2—(}1 ) T(Zl'z) s =0
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LN in Massive QFT: Disjoint Regions

o In our work we have studied two simple limits of the LN in
a completely generic 141 dimensional QFT
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LN in Massive QFT: Disjoint Regions

o In our work we have studied two simple limits of the LN in
a completely generic 141 dimensional QFT

e Disjoint semi-infinite regions : r1 — —o0, 14 — 00, and we
will choose 79 =0, r3 =7

& n) = 10g (8% (T)(T(O)T(r))n(T)n )
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LN in Massive QFT: Disjoint Regions

o In our work we have studied two simple limits of the LN in
a completely generic 141 dimensional QFT

e Disjoint semi-infinite regions : r1 — —o0, 14 — 00, and we
will choose 79 =0, r3 =7

& n) = 10g (8% (T)(T(O)T(r))n(T)n )

A C B
B ‘j,(rz) ﬁ%) fa—= 0
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LN in Massive QFT: Disjoint Regions

o In our work we have studied two simple limits of the LN in
a completely generic 141 dimensional QFT

e Disjoint semi-infinite regions : r1 — —o0, 14 — 00, and we
will choose 79 =0, r3 =7

& n) = 10g (8% (T)(T(O)T(r))n(T)n )

A C B
B ‘j,(rz) ﬁ%) fa—= 0

@ Our aim is to investigate the leading contribution to these
functions for large r.
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LN in Massive QFT: Disjoint Regions

o In our work we have studied two simple limits of the LN in
a completely generic 141 dimensional QFT

e Disjoint semi-infinite regions : r1 — —o0, 14 — 00, and we
will choose 79 =0, r3 =7

& n) = 10g (8% (T)(T(O)T(r))n(T)n )

A C B
B ‘j,(rz) ﬁ%) fa—= 0

@ Our aim is to investigate the leading contribution to these
functions for large r. This can be accessed from the one
and two-particle form factors of twist fields.

Olalla A. Castro-Alvaredo, City University London

Universal Features of the Negativity



e For adjacent regions, we found:

gt om0 2 log(r/e)

mr>>1 Cc 2 —Zmr
= ——log(me) + Esat — ——— Ko(V3mar) + O(e
108 6 2 5 Kal(VAmar) + O™ #")

with Z > /3, m := m; the smallest mass in the spectrum,
{mq} the mass spectrum and &g, a universal saturation
constant given by:

Esat = 2log (m§<7') ) —log(Ch) and Cy = 71L1_>m1 C”TfQT

1
2
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e For adjacent regions, we found:

gt m? 2 log(r/e)

mr>>1 Cc 2 —Zmr
= ——log(me) + Esat — ——— Ko(V3mar) + O(e
108 6 2 5 Kal(VAmar) + O™ #")

with Z > /3, m := m; the smallest mass in the spectrum,
{mq} the mass spectrum and &g, a universal saturation
constant given by:

Esat = 2log (m§<7') ) —log(Ch) and Cy = 71L1_>m1 C”TfQT

1
3
e For disjoint regions, we found:

gt om0 —2 log(mr) + Enite With  Enite = Esar + 210g(Ch)

mep1 1 > (mar)? {Ko(mar)2 + Holmen)Ka(mer) _ Ki(mar)®

272 MaTr
«@
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Interpretation

]

The results are very simple and hold in this form for any
141 dimensional QFT (integrable or not)

The technical reason for this is that they only depend on
the pole structure of the twist field matrix elements and of
the S-matrix, not on the details of the theory

This means that the negativity (as the EE) can provide
information about the mass spectrum of QFT

The saturation and shift constants depend on QFT (the
VEV) and CFT (the structure constant) data

This means that numerical simulations of the negativity on
quantum spin chain models could be used to extract
information about the VEVs, the structure constant and
the mass spectrum of any 141 dimensional massive QFT

Such numerical checks have been carried out for the EE
[Levi, OCA & Doyon’12; Sirker et al.’14]
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we have
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Derivation

@ The derivation of our results follows from two approaches:
@ CFT twist fields OPEs which control the short-distance
(small-r) behaviour
@ 1+1 dimensional QFT methods for the study of matrix
elements of twist fields (form factors). This controls the
large-r behaviour of the LN
@ In both limits it is crucial to understand how the (correct)
analytic continuation from n even to n = 1 may be
performed
o Consider the case of adjacent regions. At short distances
we have

(TO)T2(r))n ~ 23 CTHT)n

and so
lim log (54A"+4A% (TO)YT*(r)n(T >n) = —g log(r/e)+log(Ch)

@ Since € is a non-universal cut-off we can also redefine ¢ to
absorbe the constant C}
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Derivation: large-r

e For large r on the other hand we can use QFT
factorization and we have

lim log (€4A"+4A% (T(0)T? (7")>n<7->n>

n—1
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Derivation: large-r

e For large r on the other hand we can use QFT
factorization and we have

lim log (€4A"+4A% (T(0)T? (7")>n<7->n>

n—1

= Slog(e) +log(TYHT)}) = § log(me) + 2log(m™(T)
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Derivation: large-r

e For large r on the other hand we can use QFT
factorization and we have

lim log (€4A"+4A% (T(0)T? (7")>n<7->n>

n—1

= Slog(e) +log(TYHT)}) = § log(me) + 2log(m™(T)

e Upon redefinition of the cut-off € — ¢/ (Cl)% the saturation
value above becomes (as anticipated)

%log(ma) + Egat = %log(ms) + 2log(m*§<7') ) — log(C1)

1

2

o Exponentially decaying corrections to this saturation can
be obtained by using a form factor expansion of the
two-point function. I will illustrate this with a simple
example:

NI

)
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The free Boson

o For the free Boson it is known that:

(0[T161...0k)puyo, =0 for k odd
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The free Boson

o For the free Boson it is known that:
(0[T161...0k)puyo, =0 for k odd

and
sin

. im+01—05 . im—01+0>
2n sinh (T) sinh (T)

313

F(91—92,n) = <0|T|9192>11 =

astro-Alvaredo, City University London Universal Features of the Negativity



The free Boson

o For the free Boson it is known that:
(0[T161...0k)puyo, =0 for k odd

and
sin
2n sinh (%) sinh (%)

313

F(91—92,n) = <0|T|9192>11 =

e The first non-trivial correction to the two point function
(T(0)T?(r)), comes from the two particle form factor and
is given by the sum

21

n Z (0 + 4mij,n (0—|—27rij,g)

n . ir—30 n 0+
—) tan

. i0
_§F( 5 )+nF(217r—30,n)tan (5) — (0 — —0)
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The free Boson (continued)

@ The contribution to the negativity of the sum above is
proportional to

o0 i 30 i0 10 0
n/ F(W+ , E)tan wrm + 2F(2im + 30, n) tan ki Ko(2mr cosh =)
. 2 2 4 2 2
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o Interestingly, this function is zero for n — 1 so it appears
there would be no contribution from this term.
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proportional to
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. 2 2 4 2 2

o Interestingly, this function is zero for n — 1 so it appears
there would be no contribution from this term. However,
there is a subtlety...

e If we approach n =1 from large (even) values of n we will
notice that a number of n-dependent poles of the functions
F(6,n) and F'(0, %) cross the real axis
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The free Boson (continued)

@ The contribution to the negativity of the sum above is
proportional to

o0 i 30 i0 10 0
n/ F(W+ , E)tan wrm + 2F(2im + 30, n) tan ki Ko(2mr cosh =)
. 2 2 4 2 2

o Interestingly, this function is zero for n — 1 so it appears
there would be no contribution from this term. However,
there is a subtlety...

e If we approach n =1 from large (even) values of n we will
notice that a number of n-dependent poles of the functions
F(6,n) and F'(0, %) cross the real axis

@ More precisely there is a kinematic pole at 6 = %(271 —3)
whose residue must be considered in the limit n — 1. This

gives rise to a contribution proportional to Ko (v/3mr)
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The free Boson (continued)

@ The contribution to the negativity of the sum above is
proportional to

o0 i 30 i0 10 0
n/ F(W+ , E)tan wrm + 2F(2im + 30, n) tan ki Ko(2mr cosh =)
. 2 2 4 2 2

o Interestingly, this function is zero for n — 1 so it appears
there would be no contribution from this term. However,
there is a subtlety...

e If we approach n =1 from large (even) values of n we will
notice that a number of n-dependent poles of the functions
F(6,n) and F'(0, %) cross the real axis

@ More precisely there is a kinematic pole at 6 = %(271 —3)
whose residue must be considered in the limit n — 1. This
gives rise to a contribution proportional to Ko (v/3mr)

o This analysis can be generalized to any 1+1 d QFT
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Conclusion & Outlook

o Although a full computation of the LN for 141 dimensional
QFTs remains challenging, we have shown that in
particular limits the LN exhibits remarkable universality
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Conclusion & Outlook

o Although a full computation of the LN for 141 dimensional
QFTs remains challenging, we have shown that in
particular limits the LN exhibits remarkable universality

o In particular, its leading large-r behaviour is fully
determined by the mass spectrum of the QFT (including
bound states). This means a computation of the LN can in
principle give information about the degeneracy of the
mass spectrum (as does the EE)

@ There are many extensions of this work which are possible
(we are already working on some of them): considering
more general set-ups, studying specific models in more
detail etc.

@ We hope our work will shed light on how to perform the
required analytic continuation correctly, an issue which
remains unresolved for CFT
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