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We have done some work together!
• M. Mazzoni, O. Pomponio, O.A. Castro-Alvaredo and F. Ravanini, The Staircase Model: 

Massless Flows and Hydrodynamics,   J. Phys. A54 404005 (2021), arXiv:2105.13349. 
Part of the Special Issue on Hydrodynamics of Low-Dimensional Quantum Systems. 

• O.A. Castro-Alvaredo, C. De Fazio, B. Doyon, and F. Ravanini, On the Hydrodynamics of 
Unstable Excitations, JHEP 09 (2020) 045, arXiv:2005.11266. 

• O.A. Castro-Alvaredo, B. Doyon and F. Ravanini, Irreversibility of the  renormalization 
group flow in non-unitary quantum field theory, J. Phys. A50 424002 (2017). Part of 
"John Cardy's scale-invariant journey in low dimensions: a special issue for his 70th 
birthday", arXiv:1706.01871. 

• D. Bianchini, O.A. Castro-Alvaredo, B. Doyon, E. Levi and F. Ravanini, Entanglement 
Entropy of Non Unitary Conformal Field Theory, J. Phys A48 (2015) 4 A4FT01. This 
article has appeared on IoP "Highlights of 2015". arXiv:1405.2804.

https://arxiv.org/abs/2105.13349
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log ξ + constant

• This was interesting because in many other contexts (ie free energy of TBA) we 
know that the central charge c generalises to the effective central charge 

 in non-unitary models where c may be 0 or negative [Itzykson, 
Saleur and Zuber’86].
ceff = c − 24Δmin
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This work is heavily 
inspired by the 
work Fabio spoke 
a b o u t i n t h e 
previous talk! 
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• The sinh-Gordon model can be seen as the 
Ising model perturbed by an infinite 
number of irrelevant perturbations for 
carefully chosen couplings [LeClair’21; Ahn 
& LeClair’22]
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• There are several properties of interest:

1. The solution is very simple and general. The minimal form factors gets modified 
by a universal multiplicative factor, just like the S-matrix!
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“Integration 
constant” fixed by 

asymptotics
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• We have found that there is a new representation for the MFF, which is totally 
explicit, convergent and numerically efficient, given in terms of elementary and (a 
finite number of) special functions. [This was both sudden and unexpected to me!]

• Having this representation for sinh-Gordon means that we effectively have it for every 
diagonal IQFT since the S-matrix and MFF of sinh-Gordon is a “standard block” for 
more complicated theories [Dorey, Exact S-Matrices’98; Mussardo, Book’10] 

• This work also proves that the MFF “CDD” factor Fabio spoke about plays a crucial role 
in standard theories. It actually ensures that the MFF has “desirable asymptotics” 
rather than the unusual asymptotics of the MFF for a single -perturbation.TT̄








