

Did you know he has a Lamborghini? Francesco's Work, Life and (some) Secrets plus New Results on Minimal Form Factors

I have known
Francesco for a very long time.....

Our most successful collaboration ...

Davide Bianchini PhD 2013-16

Fabio Sailis
PhD 2022-25?

We have done some work together!

- M. Mazzoni, O. Pomponio, O.A. Castro-Alvaredo and F. Ravanini, The Staircase Model: Massless Flows and Hydrodynamics, J. Phys. A54 404005 (2021), arXiv:2105.13349. Part of the Special Issue on Hydrodynamics of Low-Dimensional Quantum Systems.
- O.A. Castro-Alvaredo, C. De Fazio, B. Doyon, and F. Ravanini, On the Hydrodynamics of Unstable Excitations, JHEP 09 (2020) 045, arXiv:2005.11266.
- O.A. Castro-Alvaredo, B. Doyon and F. Ravanini, Irreversibility of the renormalization group flow in non-unitary quantum field theory, J. Phys. A50 424002 (2017). Part of "John Cardy's scale-invariant journey in low dimensions: a special issue for his 70th birthday", arXiv:1706.01871.
- D. Bianchini, O.A. Castro-Alvaredo, B. Doyon, E. Levi and F. Ravanini, Entanglement Entropy of Non Unitary Conformal Field Theory, J. Phys A48 (2015) 4 A4FT01. This article has appeared on IoP "Highlights of 2015". arXiv:1405.2804.

Entanglement Entropy of Non-Unitary Models

Entanglement Entropy of Non-Unitary Models

- Let me spend 5 minutes on one of our collaborations, in fact, our first one [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15]

Entanglement Entropy of Non-Unitary Models

- Let me spend 5 minutes on one of our collaborations, in fact, our first one [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15]
- This was initiated by Francesco as part of the MSc project of Davide Bianchini [Bianchini \& Ravanini'15]. They studied the EE of the Forrester-Baxter nonunitary RSOS models by corner transfer matrix (CTF).

Entanglement Entropy of Non-Unitary Models

- Let me spend 5 minutes on one of our collaborations, in fact, our first one [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15]
- This was initiated by Francesco as part of the MSc project of Davide Bianchini [Bianchini \& Ravanini'15]. They studied the EE of the Forrester-Baxter nonunitary RSOS models by corner transfer matrix (CTF).
- They found that the CTF computation was predicting the usual saturation constant for entanglement (CTF gives the EE of a semi-infinite line) but the coefficient was different: $\frac{c_{\text {eff }}}{6} \log \xi+$ constant

Entanglement Entropy of Non-Unitary Models

- Let me spend 5 minutes on one of our collaborations, in fact, our first one [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15]
- This was initiated by Francesco as part of the MSc project of Davide Bianchini [Bianchini \& Ravanini'15]. They studied the EE of the Forrester-Baxter nonunitary RSOS models by corner transfer matrix (CTF).
- They found that the CTF computation was predicting the usual saturation constant for entanglement (CTF gives the EE of a semi-infinite line) but the coefficient was different: $\frac{c_{\text {eff }}}{6} \log \xi+$ constant
- This was interesting because in many other contexts (ie free energy of TBA) we know that the central charge c generalises to the effective central charge $c_{\text {eff }}=c-24 \Delta_{\min }$ in non-unitary models where c may be 0 or negative [Itzykson, Saleur and Zuber'86].

CFT and Branch Point Twist Field Derivation

CFT and Branch Point Twist Field Derivation

- In our paper [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15] we found a consistent CFT derivation for non-unitary CFTs leading to the formula

CFT and Branch Point Twist Field Derivation

- In our paper [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15] we found a consistent CFT derivation for non-unitary CFTs leading to the formula

$$
S_{n}(\ell)=\frac{c_{\mathrm{eff}}(n+1)}{12 n} \log \frac{\ell}{\varepsilon}+p \log \left(\log \frac{\ell}{\varepsilon}\right)
$$

$$
\text { where } p \text { is related to the }
$$ properties of the operator

$$
L_{0}=\Delta I+N, \quad N^{r}=0, \quad 0 \leq p \leq r-1
$$

CFT and Branch Point Twist Field Derivation

- In our paper [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15] we found a consistent CFT derivation for non-unitary CFTs leading to the formula

$$
S_{n}(\ell)=\frac{c_{\mathrm{eff}}(n+1)}{12 n} \log \frac{\ell}{\varepsilon}+p \log \left(\log \frac{\ell}{\varepsilon}\right)
$$

$$
\text { where } p \text { is related to the }
$$

properties of the operator

$$
L_{0}=\Delta I+N, \quad N^{r}=0, \quad 0 \leq p \leq r-1
$$

- We also proposed a rewriting of the Rényi entropies in terms of composite twist fields, one of the first uses of this kind of field in the context of entanglement (now very popular in the context of symmetry resolution).

CFT and Branch Point Twist Field Derivation

- In our paper [Bianchini, Castro-Alvaredo, Doyon, Levi \& F. Ravanini'15] we found a consistent CFT derivation for non-unitary CFTs leading to the formula

$$
S_{n}(\ell)=\frac{c_{\mathrm{eff}}(n+1)}{12 n} \log \frac{\ell}{\varepsilon}+p \log \left(\log \frac{\ell}{\varepsilon}\right)
$$

where p is related to the properties of the operator
$L_{0}=\Delta I+N, \quad N^{r}=0, \quad 0 \leq p \leq r-1$

- We also proposed a rewriting of the Rényi entropies in terms of composite twist fields, one of the first uses of this kind of field in the context of entanglement (now very popular in the context of symmetry resolution).

$$
S_{n}(\ell)=\frac{\left\langle\mathscr{T}_{\phi}(0) \mathscr{T}_{\phi}^{\dagger}(\ell)\right\rangle}{\left\langle\phi(0) \phi^{\dagger}(\ell)\right\rangle^{n}}, \quad \mathscr{T}_{\phi} \propto \lim _{x \rightarrow 0} x^{2(1-1 / n) \Delta} \mathscr{T}(0) \phi(x), \quad \Delta_{c}=\Delta_{\mathscr{T}}+\frac{\Delta_{\phi}}{n}
$$

Ok but, what is he actually known for?

unusual tba
irreversibility
products perturbed
non-linear minimal equation Chains lsing attice functions
invariant theory integral
scaling
class คค 园 new rg xxz invariance
classification
 nonlinear dibegrem entropy finite field open su ansatz spectrum sine-gordon ankin tricritical gapped family group
nlie modular chain one-dimensional non-unitary partition boundary spin terms ${ }_{\text {rsos }}$ excited bethe entanglement sum semations quantum extended approach algebras $\begin{array}{cc}\text { hydrodynamics fusion } & \text { encoded } \\ \text { xyz completeness } & \text { limit renyi }\end{array}$ rule towards dirichlet essential symmetric

INFN

INFN

Italian Bureaucracy

INFN Divina Comedia

Italian Bureaucracy

Food INFN Divina Comedia Italian Bureaucracy

Food

Crescentine INFN Divina Comedia

Italian Bureaucracy

Food Lamborghini

Crescentine INFN Divina Comedia

Italian Bureaucracy

Food Lamborghini

Crescentine INFN Divina Comedia
 Italian Bureaucracy

Campanilismo

Food Lamborghini

Crescentine INFN Divina Comedia

Italian Bureaucracy

Campanilismo

Romagnolo

Food Lamborghini

Crescentine INFN Divina Comedia

Italian Bureaucracy

Campanilismo

Italian History

Romagnolo

Tateo's Snake

Food Lamborghini

Crescentine INFN Divina Comedia

Italian Bureaucracy

Campanilismo

Italian History

Romagnolo

Finally: a Dark Secret

Finally: a Dark Secret

- He is a legend...BUT

Finally: a Dark Secret

- He is a legend...BUT
- Email StyleTailored to Psychological Vulnerabilities of Recipient

Finally: a Dark Secret

- He is a legend...BUT

- Email StyleTailored to Psychological Vulnerabilities of Recipient

Very urgent (sorry!)
(i) You replied on Tue 30/08/2022 16:08

FR Francesco Ravanini

To: Castro Alvaredo, Olalla

```
CAUTION: This email originated from outside of the organ or open attachments unless you recognise the sender and safe.
```


Dear Olalla,

How are you?
I am disturbing you for a quite unusual request.

1. The very urgent email

Finally: a Dark Secret

- He is a legend...BUT

- Email StyleTailored to Psychological Vulnerabilities of Recipient

Very urgent (sorry!)
(i) You replied on Tue 30/08/2022 16:08

FR
Francesco Ravanini
To: Castro Alvaredo, Olalla

CAUTION: This email originated from outside of the organ or open attachments unless you recognise the sender and safe.

Dear Olalla,

How are you?
I am disturbing you for a quite unusual request.
(i) You replied on Wed 21/06/2023 11:57

FR Francesco Ravanini
To: Castro Alvaredo, Olalla
Wed 21/06/2023 10:40

CAUTION: This email originated from outside of the organisation. Do not click links or open attachments unless you recognise the sender and believe the content to be safe.

Dear Olalla,

I have various things to discuss with you, and it is too long to write all by email.
Can we have a video-call today? I propose at 5 p.m. Italian time (4 p.m. UK). Skype call should be enough.

Finally: a Dark Secret

- He is a legend...BUT

- Email StyleTailored to Psychological Vulnerabilities of Recipient

Very urgent (sorry!)
(i) You replied on Wed 21/06/2023 11:57

And this is How I Learned To Stop Worrying

Minimal Form Factors:

Sudently and Unexpectedly Something
New, Interesting, and Useful to Say

Olalla Castro-Alvaredo Department of Mathematics City, University of London

Work in preparation with Stefano Negro (to appear soon)

Postdoctoral Research Associate at New York University

Work in preparation with Stefano Negro (to appear soon)

This work is heavily inspired by the work Fabio spoke about in the previous talk!

Postdoctoral Research Associate at New York University

PhD Student at City, University of London

CDD Factors

CDD Factors

- In Fabio's talk we have just learned about a particular type of CDD factor:

CDD Factors

- In Fabio's talk we have just learned about a particular type of CDD factor:

$$
\begin{gathered}
S_{\boldsymbol{\alpha}}(\theta)=S_{0}(\theta) \Phi_{\boldsymbol{\alpha}}(\theta), \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} \\
\Phi_{\boldsymbol{\alpha}}(\theta)=\exp \left[-i \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)\right]
\end{gathered}
$$

CDD Factors

- In Fabio's talk we have just learned about a particular type of CDD factor:

$$
\begin{gathered}
S_{\boldsymbol{\alpha}}(\theta)=S_{0}(\theta) \Phi_{\boldsymbol{\alpha}}(\theta), \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} \\
\Phi_{\boldsymbol{\alpha}}(\theta)=\exp \left[-i \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)\right]
\end{gathered}
$$

- We know however that an S-matrix such as that of the sinh-Gordon model is also a CDD factor.

$$
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)}
$$

CDD Factors

- In Fabio's talk we have just learned about a particular type of CDD factor:

$$
\begin{gathered}
S_{\boldsymbol{\alpha}}(\theta)=S_{0}(\theta) \Phi_{\boldsymbol{\alpha}}(\theta), \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} \\
\Phi_{\boldsymbol{\alpha}}(\theta)=\exp \left[-i \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)\right]
\end{gathered}
$$

- We know however that an S-matrix such as that of the sinh-Gordon model is also a CDD factor.

Is there a relationship between these two types of CDD factor?

$$
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)}
$$

Yes! There Is!

Yes! There Is!

$$
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)}
$$

Yes! There Is!

$$
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)}
$$

Yes! There Is!

$$
\begin{array}{r}
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)} \Rightarrow-i \frac{d}{d \theta} \log S(\theta)=\frac{4 \cos \frac{\pi b}{2} \cosh \theta}{\cos (\pi b)+\cosh (2 \theta)} \\
\mathrm{B}=\mathrm{b}-1
\end{array}
$$

Yes! There Is!

$$
\begin{array}{r}
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)} \Rightarrow-i \frac{d}{d \theta} \log S(\theta)=\frac{4 \cos \frac{\pi b}{2} \cosh \theta}{\cos (\pi b)+\cosh (2 \theta)} \\
\mathrm{B}=\mathrm{b}-1
\end{array}
$$

Yes! There Is!

$$
\begin{aligned}
& S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)} \Rightarrow-i \frac{d}{d \theta} \log S(\theta)=\frac{4 \cos \frac{\pi b}{2} \cosh \theta}{\cos (\pi b)+\cosh (2 \theta)} \\
& \mathrm{B}=\mathrm{b}-1 \\
& -i \frac{d}{d \theta} \log S(\theta)=4 \sum_{k=0}^{\infty}(-1)^{k} \cos \frac{(2 k+1) \pi b}{2} \cosh ((2 k+1) \theta)
\end{aligned}
$$

Yes! There Is!

$$
\begin{aligned}
& S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)} \\
& -i \frac{d}{d \theta} \log S(\theta)=\frac{4 \cos \frac{\pi b}{2} \cosh \theta}{\cos (\pi b)+\cosh (2 \theta)} \\
& \mathrm{B}=\mathrm{b}-1 \\
& -i \theta \\
& \log S(\theta)=4 \sum_{k=0}^{\infty}(-1)^{k} \cos \frac{(2 k+1) \pi b}{2} \cosh ((2 k+1) \theta)
\end{aligned}
$$

Yes! There Is!

$$
\begin{array}{r}
S(\theta)=\frac{\tanh \frac{1}{2}\left(\theta-\frac{i \pi B}{2}\right)}{\tanh \frac{1}{2}\left(\theta+\frac{i \pi B}{2}\right)} \Rightarrow-i \frac{d}{d \theta} \log S(\theta)=\frac{4 \cos \frac{\pi b}{2} \cosh \theta}{\cos (\pi b)+\cosh (2 \theta)} \\
\mathrm{B}=\mathrm{b}-1
\end{array}
$$

$$
-i \frac{d}{d \theta} \log S(\theta)=4 \sum_{k=0}^{\infty}(-1)^{k} \cos \frac{(2 k+1) \pi b}{2} \cosh ((2 k+1) \theta)
$$

$$
\boldsymbol{\perp}(\theta)=-\exp \left[-4 i \sum_{k=0}^{\infty}(-1)^{k+1} \frac{\cos \frac{(2 k+1) \pi b}{2}}{2 k+1} \sinh ((2 k+1) \theta)\right]
$$

Sinh-Gordon S-Matrix

Sinh-Gordon S-Matrix

- So, the sinh-Gordon S-matrix has exactly the form

Sinh-Gordon S-Matrix

- So, the sinh-Gordon S-matrix has exactly the form

$$
\begin{aligned}
& S_{\alpha}(\theta)=S_{0}(\theta) \Phi_{\alpha}(\theta), \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} \\
& \Phi_{\alpha}^{\mathrm{sG}}(\theta)=\exp \left[-i \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)\right]
\end{aligned}
$$

Sinh-Gordon S-Matrix

- So, the sinh-Gordon S-matrix has exactly the form

$$
\begin{aligned}
& S_{\boldsymbol{\alpha}}(\theta)=S_{0}(\theta) \Phi_{\boldsymbol{\alpha}}(\theta), \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} \\
& \Phi_{\boldsymbol{\alpha}}^{\mathrm{sG}}(\theta)=\exp \left[-i \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { with } S_{0}(\theta)=-1 \text { and } \\
\qquad \begin{array}{c}
\alpha_{s} m^{2 s}=\frac{4 i^{s+1}}{s} \cos \frac{s b \pi}{2} \\
\text { with } \quad s=1,3,5 \ldots
\end{array}
\end{gathered}
$$

Sinh-Gordon S-Matrix

- So, the sinh-Gordon S-matrix has exactly the form

$$
\begin{aligned}
& S_{\boldsymbol{\alpha}}(\theta)=S_{0}(\theta) \Phi_{\boldsymbol{\alpha}}(\theta), \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} \\
& \Phi_{\boldsymbol{\alpha}}^{\mathrm{sG}}(\theta)=\exp \left[-i \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)\right]
\end{aligned}
$$

$$
\begin{gathered}
\text { with } S_{0}(\theta)=-1 \text { and } \\
\alpha_{s} m^{2 s}=\frac{4 i^{s+1}}{s} \cos \frac{s b \pi}{2}
\end{gathered}
$$

with $\quad s=1,3,5 \ldots$

Sinh-Gordon S-Matrix

- So, the sinh-Gordon S-matrix has exactly the form

$$
\begin{aligned}
& S_{\boldsymbol{\alpha}}(\theta)=S_{0}(\theta) \Phi_{\boldsymbol{\alpha}}(\theta), \boldsymbol{\alpha}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\} \\
& \Phi_{\boldsymbol{\alpha}}^{\mathrm{sG}}(\theta)=\exp \left[-i \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)\right]
\end{aligned}
$$

with $S_{0}(\theta)=-1$ and

$$
\alpha_{s} m^{2 s}=\frac{4 i^{s+1}}{s} \cos \frac{s b \pi}{2}
$$

with $s=1,3,5 \ldots$

- The sinh-Gordon model can be seen as the Ising model perturbed by an infinite number of irrelevant perturbations for carefully chosen couplings [LeClair'21; Ahn \& LeClair'22]

Minimal Form Factor

Minimal Form Factor

- From Fabio's talk we have already seen that the MFF of TT̄-perturbed theories has the structure [OC-A,Negro \& Sailis'23]:

Minimal Form Factor

- From Fabio's talk we have already seen that the MFF of TT̄T-perturbed theories has the structure [OC-A,Negro \& Sailis'23]:

$$
F_{\min }(\theta ; \boldsymbol{\alpha})=F_{\min }(\theta ; \mathbf{0}) \varphi(\theta ; \boldsymbol{\alpha})
$$

Minimal Form Factor

- From Fabio's talk we have already seen that the MFF of T̄T-perturbed theories has the structure [OC-A,Negro \& Sailis'23]:

$$
F_{\min }(\theta ; \boldsymbol{\alpha})=F_{\min }(\theta ; \mathbf{0}) \varphi(\theta ; \boldsymbol{\alpha})
$$

$$
\begin{gathered}
\varphi(\theta ; \boldsymbol{\alpha})=e^{-\frac{i \pi-\theta}{2 \pi} \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)+\sum_{s \in \mathcal{S}^{\prime}} \beta_{s} m^{2 s} \cosh (s \theta)} \\
=e^{-\frac{\vartheta}{2 \pi} i \log \Phi_{\boldsymbol{\alpha}}(\theta)} C_{\boldsymbol{\beta}}(\theta) \quad \text { with } \quad \vartheta=i \pi-\theta \text { and } C_{\boldsymbol{\beta}}(\theta)=e^{\sum_{s} \beta_{s} m^{2 s} \cosh (s \theta)}
\end{gathered}
$$

Minimal Form Factor

- From Fabio's talk we have already seen that the MFF of T̄T-perturbed theories has the structure [OC-A,Negro \& Sailis'23]:

$$
F_{\min }(\theta ; \boldsymbol{\alpha})=F_{\min }(\theta ; \mathbf{0}) \varphi(\theta ; \boldsymbol{\alpha})
$$

$$
\begin{gathered}
\varphi(\theta ; \boldsymbol{\alpha})=e^{-\frac{i \pi-\theta}{2 \pi} \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)+\sum_{s \in \mathcal{S}^{\prime}} \beta_{s} m^{2 s} \cosh (s \theta)} \\
=e^{-\frac{\vartheta}{2 \pi} i \log \Phi_{\boldsymbol{\alpha}}(\theta)} C_{\boldsymbol{\beta}}(\theta) \quad \text { with } \quad \vartheta=i \pi-\theta \text { and } C_{\boldsymbol{\beta}}(\theta)=e^{\sum_{s} \beta_{s} m^{2 s} \cosh (s \theta)}
\end{gathered}
$$

Minimal Form Factor

- From Fabio's talk we have already seen that the MFF of TTT-perturbed theories has the structure [OC-A,Negro \& Sailis'23]:

$$
F_{\min }(\theta ; \boldsymbol{\alpha})=F_{\min }(\theta ; \mathbf{0}) \varphi(\theta ; \boldsymbol{\alpha})
$$

$$
\begin{gathered}
\varphi(\theta ; \boldsymbol{\alpha})=e^{-\frac{i \pi-\theta}{2 \pi} \sum_{s \in \mathcal{S}} \alpha_{s} m^{2 s} \sinh (s \theta)+\sum_{s \in \mathcal{S}^{\prime}} \beta_{s} m^{2 s} \cosh (s \theta)} \\
=e^{-\frac{\vartheta}{2 \pi} i \log \Phi_{\boldsymbol{\alpha}}(\theta)} C_{\boldsymbol{\beta}}(\theta) \quad \text { with } \quad \vartheta=i \pi-\theta \text { and } C_{\boldsymbol{\beta}}(\theta)=e^{\sum_{s} \beta_{s} m^{2 s} \cosh (s \theta)}
\end{gathered}
$$

- There are several properties of interest:

Minimal Form Factor

- From Fabio's talk we have already seen that the MFF of TTT-perturbed theories has the structure [OC-A,Negro \& Sailis'23]:

$$
F_{\min }(\theta ; \boldsymbol{\alpha})=F_{\min }(\theta ; \mathbf{0}) \varphi(\theta ; \boldsymbol{\alpha})
$$

$$
\begin{gathered}
\varphi(\theta ; \boldsymbol{\alpha})=e^{-\frac{i \pi-\theta}{2 \pi} \sum_{s \in s} \alpha_{s} m^{2 s} \sinh (s \theta)+\sum_{s \in s^{\prime}} \beta_{s} m^{2 s} \cosh (s \theta)} \\
=e^{-\frac{\theta}{2 \pi} i \log \Phi_{\alpha}(\theta)} C_{\boldsymbol{\beta}}(\theta) \quad \text { with } \quad \vartheta=i \pi-\theta \text { and } C_{\boldsymbol{\beta}}(\theta)=e^{\sum_{s} \beta_{s} m^{2 s} \cosh (s \theta)}
\end{gathered}
$$

- There are several properties of interest:

1. The solution is very simple and general. The minimal form factors gets modified by a universal multiplicative factor, just like the S-matrix!

Minimal Form Factor

- From Fabio's talk we have already seen that the MFF of TTT-perturbed theories has the structure [OC-A,Negro \& Sailis'23]:

$$
F_{\min }(\theta ; \boldsymbol{\alpha})=F_{\min }(\theta ; \mathbf{0}) \varphi(\theta ; \boldsymbol{\alpha})
$$

$$
\begin{gathered}
\varphi(\theta ; \boldsymbol{\alpha})=e^{-\frac{i \pi-\theta}{2 \pi} \sum_{s \in S} \alpha_{s} m^{2 s} \sinh (s \theta)+\sum_{s \in s^{\prime}} \beta_{s} m^{2 s} \cosh (s \theta)} \\
=e^{-\frac{s}{2 \pi} i \log \Phi_{\alpha}(\theta)} C_{\boldsymbol{\beta}}(\theta) \quad \text { with } \quad \vartheta=i \pi-\theta \text { and } C_{\boldsymbol{\beta}}(\theta)=e^{\sum_{s} \beta_{s} m^{2 s} \cosh (s \theta)}
\end{gathered}
$$

- There are several properties of interest:

1. The solution is very simple and general. The minimal form factors gets modified by a universal multiplicative factor, just like the S-matrix!
2. The solution depends on additional parameters not present in the S-matrix. In a sense, it contains its own CDD factor

Minimal Form Factor Representations

Minimal Form Factor Representations

- Since the sinh-Gordon S-matrix can be written in the "T̄T-form" then it follows that the sinh-Gordon MFF should somehow admit a "T $\overline{\mathrm{T}}$ " representation as well.

Minimal Form Factor Representations

- Since the sinh-Gordon S-matrix can be written in the "T̄T-form" then it follows that the sinh-Gordon MFF should somehow admit a "TT" representation as well.
- This is indeed the case:

Minimal Form Factor Representations

- Since the sinh-Gordon S-matrix can be written in the "T̄T-form" then it follows that the sinh-Gordon MFF should somehow admit a "TT" representation as well.
- This is indeed the case:

Minimal Form Factor Representations

- Since the sinh-Gordon S-matrix can be written in the "T̄T-form" then it follows that the sinh-Gordon MFF should somehow admit a "T $\overline{\mathrm{T}}$ " representation as well.
- This is indeed the case:

$$
F_{\min }^{\mathrm{sG}}(\theta)=F_{\min }^{\mathrm{Ising}}(\theta) e^{-\frac{\theta}{2 \pi} \log \Phi_{\alpha}^{\mathrm{sG}}(\theta)} C_{\beta}^{\mathrm{SG}}(\theta) \quad \text { with } \quad \vartheta=i \pi-\theta
$$

Minimal Form Factor Representations

- Since the sinh-Gordon S-matrix can be written in the "T̄T-form" then it follows that the sinh-Gordon MFF should somehow admit a "T $\overline{\mathrm{T}}$ " representation as well.
- This is indeed the case:

$$
F_{\min }^{\mathrm{sG}}(\theta)=F_{\min }^{\mathrm{Ising}}(\theta) e^{-\frac{\theta}{2 \pi} \log \Phi_{\alpha}^{\mathrm{sG}}(\theta)} C_{\beta}^{\mathrm{SG}}(\theta) \quad \text { with } \quad \vartheta=i \pi-\theta
$$

- Let's have a closer look at all these functions.....

The Formula

The Formula

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad \text { with } \quad \vartheta=i \pi-\theta
\end{aligned}
$$

The Formula

$$
\log F_{\min }^{\mathrm{sG}}(\vartheta)
$$

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad \text { with } \quad \vartheta=i \pi-\theta
\end{aligned}
$$

The Formula

$$
\log F_{\min }^{\mathrm{F}_{\mathrm{in}}}(\vartheta)
$$

$\log F_{\text {min }}^{\text {Ising }}(\vartheta)$

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad \text { with } \quad \vartheta=i \pi-\theta
\end{aligned}
$$

The Formula

$$
\begin{aligned}
\log F_{\min }^{\mathrm{sG}}(\vartheta) & \log F_{\min }^{\mathrm{Ising}}(\vartheta) \\
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad \text { with } \vartheta=i \pi-\theta
\end{aligned}
$$

$$
-\frac{i \vartheta}{2 \pi} i \log \Phi_{\alpha}^{\mathrm{sG}}(\vartheta)
$$

The Formula

$\log F_{\min }^{\mathrm{sG}}(\vartheta)$

$\log F_{\min }^{\text {sing }}(\vartheta)$

$\omega(\vartheta)$	$\left.=\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right]\right]$
	$-\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right.$
	$\left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad$ with $\vartheta=i \pi-\theta$

$$
-\frac{i \vartheta}{2 \pi} i \log \Phi_{\alpha}^{\mathrm{SG}}(\vartheta)
$$

The Formula

$\log F_{\min }^{\mathrm{sG}}(\vartheta)$	$\log F_{\min }^{\mathrm{Ising}}(\vartheta)$
"Integration constant" fixed by asymptotics	
$\omega(\vartheta)$	$\left.=\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right]\right]$
	$-\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right.$
	$\left.\left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right]\right]$ with $\vartheta=i \pi-\theta$

$$
-\frac{i \vartheta}{2 \pi} i \log \Phi_{\alpha}^{\mathrm{sG}}(\vartheta)
$$

The Usual Representations

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:
- Integral Representation

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:
- Integral Representation

$$
F_{\min }(\beta, B)=\mathcal{N} \exp \left[8 \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \left(\frac{x B}{4}\right) \sinh \left(\frac{x}{2}\left(1-\frac{B}{2}\right)\right) \sinh \frac{x}{2}}{\sinh ^{2} x} \sin ^{2}\left(\frac{x \hat{\beta}}{2 \pi}\right)\right]
$$

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:
- Integral Representation

$$
F_{\min }(\beta, B)=\mathcal{N} \exp \left[8 \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \left(\frac{x B}{4}\right) \sinh \left(\frac{x}{2}\left(1-\frac{B}{2}\right)\right) \sinh \frac{x}{2}}{\sinh ^{2} x} \sin ^{2}\left(\frac{x \hat{\beta}}{2 \pi}\right)\right]
$$

$$
\begin{gathered}
B=b-1 \\
\hat{\beta}=i \pi-\beta
\end{gathered}
$$

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:
- Integral Representation

$$
F_{\min }(\beta, B)=\mathcal{N} \exp \left[8 \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \left(\frac{x B}{4}\right) \sinh \left(\frac{x}{2}\left(1-\frac{B}{2}\right)\right) \sinh \frac{x}{2}}{\sinh ^{2} x} \sin ^{2}\left(\frac{x \hat{\beta}}{2 \pi}\right)\right]
$$

- Infinite Product of Gamma Functions Representation

$$
\begin{gathered}
\mathrm{B}=\mathrm{b}-1 \\
\hat{\beta}=i \pi-\beta
\end{gathered}
$$

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:
- Integral Representation

$$
F_{\min }(\beta, B)=\mathcal{N} \exp \left[8 \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \left(\frac{x B}{4}\right) \sinh \left(\frac{x}{2}\left(1-\frac{B}{2}\right)\right) \sinh \frac{x}{2}}{\sinh ^{2} x} \sin ^{2}\left(\frac{x \hat{\beta}}{2 \pi}\right)\right]
$$

- Infinite Product of Gamma Functions Representation

$$
F_{\min }(\beta, B)=\prod_{k=0}^{\infty}\left|\frac{\Gamma\left(k+\frac{3}{2}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+\frac{1}{2}+\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+1-\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right)}{\Gamma\left(k+\frac{1}{2}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+\frac{3}{2}-\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+1+\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right)}\right|^{2}
$$

$$
\begin{gathered}
\mathrm{B}=\mathrm{b}-1 \\
\hat{\beta}=i \pi-\beta
\end{gathered}
$$

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:
- Integral Representation

$$
F_{\min }(\beta, B)=\mathcal{N} \exp \left[8 \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \left(\frac{x B}{4}\right) \sinh \left(\frac{x}{2}\left(1-\frac{B}{2}\right)\right) \sinh \frac{x}{2}}{\sinh ^{2} x} \sin ^{2}\left(\frac{x \hat{\beta}}{2 \pi}\right)\right]
$$

- Infinite Product of Gamma Functions Representation

$$
F_{\min }(\beta, B)=\prod_{k=0}^{\infty}\left|\frac{\Gamma\left(k+\frac{3}{2}+\frac{i \beta}{2 \pi}\right) \Gamma\left(k+\frac{1}{2}+\frac{B}{4}+\frac{i \beta}{2 \pi}\right) \Gamma\left(k+1-\frac{B}{4}+\frac{i \beta}{2 \pi}\right)}{\Gamma\left(k+\frac{1}{2}+\frac{i \beta}{2 \pi}\right) \Gamma\left(k+\frac{3}{2}-\frac{B}{4}+\frac{i \beta}{2 \pi}\right) \Gamma\left(k+1+\frac{B}{4}+\frac{i \beta}{2 \pi}\right)}\right|^{2}
$$

- Mixed Representation

$$
\begin{gathered}
\mathrm{B}=\mathrm{b}-1 \\
\hat{\beta}=i \pi-\beta
\end{gathered}
$$

The Usual Representations

- It is useful to recall what the typical representations of this same function look like [Fring, Mussardo \& Simonetti'91]:
- Integral Representation

$$
F_{\min }(\beta, B)=\mathcal{N} \exp \left[8 \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \left(\frac{x B}{4}\right) \sinh \left(\frac{x}{2}\left(1-\frac{B}{2}\right)\right) \sinh \frac{x}{2}}{\sinh ^{2} x} \sin ^{2}\left(\frac{x \hat{\beta}}{2 \pi}\right)\right]
$$

- Infinite Product of Gamma Functions Representation

$$
F_{\min }(\beta, B)=\prod_{k=0}^{\infty}\left|\frac{\Gamma\left(k+\frac{3}{2}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+\frac{1}{2}+\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+1-\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right)}{\Gamma\left(k+\frac{1}{2}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+\frac{3}{2}-\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right) \Gamma\left(k+1+\frac{B}{4}+\frac{i \hat{\beta}}{2 \pi}\right)}\right|^{2}
$$

- Mixed Representation

$$
\hat{\beta}=i \pi-\beta
$$

$$
\begin{aligned}
& F_{\min }(\beta, B)=\mathcal{N} \prod_{k=0}^{N-1}\left[\frac{\left(1+\left(\frac{\hat{\beta} / 2 \pi}{k+\frac{1}{2}}\right)^{2}\right)\left(1+\left(\frac{\hat{\beta} / 2 \pi}{k+\frac{3}{2}-\frac{B}{4}}\right)^{2}\right)\left(1+\left(\frac{\hat{\beta} / 2 \pi}{k+1+\frac{B}{4}}\right)^{2}\right)}{\left(1+\left(\frac{\hat{\beta} / 2 \pi}{k+\frac{3}{2}}\right)^{2}\right)\left(1+\left(\frac{\hat{\beta} / 2 \pi}{k+\frac{1}{2}+\frac{B}{4}}\right)^{2}\right)\left(1+\left(\frac{\hat{\beta} / 2 \pi}{k+1-\frac{B}{4}}\right)^{2}\right)}\right]^{k+1} \\
& \times \exp \left[8 \int_{0}^{\infty} \frac{d x}{x} \frac{\sinh \left(\frac{x B}{4}\right) \sinh \left(\frac{x}{2}\left(1-\frac{B}{2}\right)\right) \sinh \frac{x}{2}}{\sinh ^{2} x}\left(N+1-N e^{-2 x}\right) e^{-2 N x} \sin ^{2}\left(\frac{x \hat{\beta}}{2 \pi}\right)\right]
\end{aligned}
$$

How does it Compare?

How does it Compare?

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad \text { with } \quad \vartheta=i \pi-\theta
\end{aligned}
$$

How does it Compare?

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad \text { with } \quad \vartheta=i \pi-\theta
\end{aligned}
$$

- No integrals, no infinite products. All explicit functions (although not elementary functions)

How does it Compare?

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \text { with } \vartheta=i \pi-\theta
\end{aligned}
$$

- No integrals, no infinite products. All explicit functions (although not elementary functions)
- Extremely convenient for numerics (just seconds to evaluate in Mathematica)

How does it Compare?

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \text { with } \vartheta=i \pi-\theta
\end{aligned}
$$

- No integrals, no infinite products. All explicit functions (although not elementary functions)
- Extremely convenient for numerics (just seconds to evaluate in Mathematica)
- Easy to generalise

How does it Compare?

$$
\begin{aligned}
\omega(\vartheta) & =\frac{1}{2} \log 2+\log \cosh \frac{\vartheta}{2}-\frac{1+b}{4} \log \left[\cosh \vartheta+\sin \frac{\pi b}{2}\right]-\frac{1-b}{4} \log \left[\cosh \vartheta-\sin \frac{\pi b}{2}\right] \\
& -\frac{i \vartheta}{2 \pi} \log \left[\frac{i \cos \frac{\pi b}{2}-\sinh \vartheta}{i \cos \frac{\pi b}{2}+\sinh \vartheta}\right]-\frac{i}{4 \pi}\left[\operatorname{Li}_{2}\left(-i e^{\vartheta-i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta-i \frac{\pi}{2} b}\right)+\right. \\
& \left.+\operatorname{Li}_{2}\left(-i e^{\vartheta+i \frac{\pi}{2} b}\right)-\operatorname{Li}_{2}\left(i e^{\vartheta+i \frac{\pi}{2} b}\right)+(\vartheta \rightarrow-\vartheta)\right] \quad \text { with } \quad \vartheta=i \pi-\theta
\end{aligned}
$$

- No integrals, no infinite products. All explicit functions (although not elementary functions)
- Extremely convenient for numerics (just seconds to evaluate in Mathematica)
- Easy to generalise

Conclusions

Conclusions

- Our work on the form factors of IQFTs perturbed by irrelevant perturbations has inspired us to look at the structure of the MFF of well-known IQFTs such as sinhGordon.

Conclusions

- Our work on the form factors of IQFTs perturbed by irrelevant perturbations has inspired us to look at the structure of the MFF of well-known IQFTs such as sinhGordon.
- We have found that there is a new representation for the MFF, which is totally explicit, convergent and numerically efficient, given in terms of elementary and (a finite number of) special functions. [This was both sudden and unexpected to me!]

Conclusions

- Our work on the form factors of IQFTs perturbed by irrelevant perturbations has inspired us to look at the structure of the MFF of well-known IQFTs such as sinhGordon.
- We have found that there is a new representation for the MFF, which is totally explicit, convergent and numerically efficient, given in terms of elementary and (a finite number of) special functions. [This was both sudden and unexpected to me!]
- Having this representation for sinh-Gordon means that we effectively have it for every diagonal IQFT since the S-matrix and MFF of sinh-Gordon is a "standard block" for more complicated theories [Dorey, Exact S-Matrices'98; Mussardo, Book'10]

Conclusions

- Our work on the form factors of IQFTs perturbed by irrelevant perturbations has inspired us to look at the structure of the MFF of well-known IQFTs such as sinhGordon.
- We have found that there is a new representation for the MFF, which is totally explicit, convergent and numerically efficient, given in terms of elementary and (a finite number of) special functions. [This was both sudden and unexpected to me!]
- Having this representation for sinh-Gordon means that we effectively have it for every diagonal IQFT since the S-matrix and MFF of sinh-Gordon is a "standard block" for more complicated theories [Dorey, Exact S-Matrices'98; Mussardo, Book'10]
- This work also proves that the MFF "CDD" factor Fabio spoke about plays a crucial role in standard theories. It actually ensures that the MFF has "desirable asymptotics" rather than the unusual asymptotics of the MFF for a single T $\overline{\mathrm{T}}$-perturbation.

